Sparsification of neuronal activity in the visual cortex at eye-opening.

Proc Natl Acad Sci U S A

Center for Integrated Protein Science and Institute of Neuroscience, Technical University Munich, Biedersteinerstrasse 29, 80802 Munich, Germany.

Published: September 2009

Eye-opening represents a turning point in the function of the visual cortex. Before eye-opening, the visual cortex is largely devoid of sensory inputs and neuronal activities are generated intrinsically. After eye-opening, the cortex starts to integrate visual information. Here we used in vivo two-photon calcium imaging to explore the developmental changes of the mouse visual cortex by analyzing the ongoing spontaneous activity. We found that before eye-opening, the activity of layer 2/3 neurons consists predominantly of slow wave oscillations. These waves were first detected at postnatal day 8 (P8). Their initial very low frequency (0.01 Hz) gradually increased during development to approximately 0.5 Hz in adults. Before eye-opening, a large fraction of neurons (>75%) was active during each wave. One day after eye-opening, this dense mode of recruitment changed to a sparse mode with only 36% of active neurons per wave. This was followed by a progressive decrease during the following weeks, reaching 12% of active neurons per wave in adults. The possible role of visual experience for this process of sparsification was investigated by analyzing dark-reared mice. We found that sparsification also occurred in these mice, but that the switch from a dense to a sparse activity pattern was delayed by 3-4 days as compared with normally-reared mice. These results reveal a modulatory contribution of visual experience during the first days after eye-opening, but an overall dominating role of intrinsic factors. We propose that the transformation in network activity from dense to sparse is a prerequisite for the changed cortical function at eye-opening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736444PMC
http://dx.doi.org/10.1073/pnas.0907660106DOI Listing

Publication Analysis

Top Keywords

visual cortex
16
eye-opening
9
cortex eye-opening
8
active neurons
8
neurons wave
8
visual experience
8
dense sparse
8
visual
7
activity
5
cortex
5

Similar Publications

Background: Insulin resistance is tightly related to cognition; however, the causal association between them remains a matter of debate. Our investigation aims to establish the causal relationship and direction between insulin resistance and cognition, while also quantifying the mediating role of brain cortical structure in this association.

Methods: The publicly available data sources for insulin resistance (fasting insulin, homeostasis model assessment beta-cell function and homeostasis model assessment insulin resistance, proinsulin), brain cortical structure, and cognitive phenotypes (visual memory, reaction time) were obtained from the MAGIC, ENIGMA, and UK Biobank datasets, respectively.

View Article and Find Full Text PDF

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Effects of psilocybin on mouse brain microstructure.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).

Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.

View Article and Find Full Text PDF

ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging.

Biosens Bioelectron

January 2025

Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:

In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!