Synaptic plasticity is considered essential for learning and storage of new memories. Whether all synapses on a given neuron have the same ability to express long-term plasticity is not well understood. Synaptic microanatomy could affect the function of local signaling cascades and thus differentially regulate the potential for plasticity at individual synapses. Here, we investigate how the presence of endoplasmic reticulum (ER) in dendritic spines of CA1 pyramidal neurons affects postsynaptic signaling. We show that the ER is targeted selectively to large spines containing strong synapses. In ER-containing spines, we frequently observed synaptically triggered calcium release events of very large amplitudes. Low-frequency stimulation of these spines induced a permanent depression of synaptic potency that was independent of NMDA receptor activation and specific to the stimulated synapses. In contrast, no functional changes were induced in the majority of spines lacking ER. Both calcium release events and long-term depression depended on the activation of metabotropic glutamate receptors and inositol trisphosphate receptors. In summary, spine microanatomy is a reliable indicator for the presence of specific signaling cascades that govern plasticity on a micrometer scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736455PMC
http://dx.doi.org/10.1073/pnas.0905110106DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
signaling cascades
8
calcium release
8
release events
8
plasticity
5
synapses
5
spines
5
differential distribution
4
distribution endoplasmic
4
reticulum controls
4

Similar Publications

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAA) are a life-threatening cardiovascular disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by vascular smooth muscle cell (VSMC) dysfunction and apoptosis, for which the mechanisms regulating loss of VSMCs within the aortic wall remain poorly defined. Using single-cell RNA-Seq of human AAA tissues, we identified increased activation of the endoplasmic reticulum stress response pathway, PERK/eIF2α/ATF4, in aortic VSMCs resulting in upregulation of an apoptotic cellular response.

View Article and Find Full Text PDF

Unfolded protein responses in T cell immunity.

Front Immunol

January 2025

Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress.

View Article and Find Full Text PDF

Arv1; a "Mover and Shaker" of Subcellular Lipids.

Contact (Thousand Oaks)

January 2025

Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA.

The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote as a candidate transporter of lipids from the endoplasmic reticulum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!