Claudins are tight junction integral membrane proteins that are key regulators of the paracellular pathway. Defects in claudin-16 (CLDN16) and CLDN19 function result in the inherited human renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). Previous studies showed that siRNA knockdown of CLDN16 in mice results in a mouse model for FHHNC. Here, we show that CLDN19-siRNA mice also developed the FHHNC symptoms of chronic renal wasting of magnesium and calcium together with defective renal salt handling. siRNA knockdown of CLDN19 caused a loss of CLDN16 from tight junctions in the thick ascending limb (TAL) without a decrease in CLDN16 expression level, whereas siRNA knockdown of CLDN16 produced a similar effect on CLDN19. In both mouse lines, CLDN10, CLDN18, occludin, and ZO-1, normal constituents of TAL tight junctions, remained correctly localized. CLDN16- and CLDN19-depleted tight junctions had normal barrier function but defective ion selectivity. These data, together with yeast two-hybrid binding studies, indicate that a heteromeric CLDN16 and CLDN19 interaction was required for assembling them into the tight junction structure and generating cation-selective paracellular channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741254 | PMC |
http://dx.doi.org/10.1073/pnas.0907724106 | DOI Listing |
Aging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopedics, Zhongshan Hospital Fudan University, No. 180, Xietu Road, Shanghai, Shanghai, 200032, CHINA.
Nanoparticles (NPs) have been explored as drugs carriers for treating tumors and central nervous system (CNS) diseases and for oral administration. However, they lack satisfactory clinical efficacy due to poor extravasation and infiltration through biological barriers to target tissues. Most clinical antitumor NPs have been designed based on enhanced permeability and retention effects which are insufficient and heterogeneous in human tumors.
View Article and Find Full Text PDFEur Cytokine Netw
September 2024
The blood-brain barrier (BBB) consists of a unique system of brain microvascular endothelial cells, capillary basement membranes, and terminal branches ("end-feet") of astrocytes. The BBB's primary function is to protect the central nervous system from potentially harmful or toxic substances in the bloodstream by selectively controlling the entry of cells and molecules, including nutrients and immune system components. During neuroinflammation, the BBB loses its integrity, resulting in increased permeability, mostly due to the activity of inflammatory cytokines.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Epithelial cell cohesion and barrier function critically depend on α-catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α-catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors; this mechanosensitivity is critical for adherens junction function. We previously showed that α-catenin is highly phosphorylated in an unstructured region that links the mechanosensitive middle and actin-binding domains (known as the P-linker region), but the cellular processes that promote α-catenin phosphorylation have remained elusive.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Xuanwu Hospital of Capital Medical University, Beijing, Beijing, China.
Background: Cerebral small vessel disease (CSVD) is one of the most common nervous system diseases. Hypertension and neuroinflammation are considered important risk factors for the development of CSVD and white matter (WM) lesions.
Method: We used the spontaneously hypertensive rat (SHR) as a model of early-onset CSVD and administered epimedium flavonoids (EF) for three months.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!