Background & Aims: The transcription factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We aimed to identify RUNX3 target genes that promote cell-cell contact to improve our understanding of RUNX3's role in suppressing gastric carcinogenesis.
Methods: We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistological analyses of human gastric tumors were performed to confirm the role of the candidate genes in gastric tumor development.
Results: Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells from Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1 increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers.
Conclusions: The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.gastro.2009.08.044 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
J Gastrointest Oncol
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China.
Gastric cancer (GC) ranks among the top five most diagnosed cancers globally, with particularly high incidence and mortality rates observed in Asian regions. Despite certain advancements achieved through early screening and treatment strategies in many countries, GC continues to pose a significant public health challenge. Approximately 20% of patients infected with develop precancerous lesions, among which metaplasia is the most critical.
View Article and Find Full Text PDFJ Gastrointest Oncol
December 2024
Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Cellular senescence is considered a new marker of cancer. It has been suggested that long non-coding RNA (lncRNA) can be used to predict the prognosis of cancers. However, it remains to be seen whether the lncRNAs associated with cellular senescence can be used to predict the prognosis of gastric cancer (GC).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!