Contact sensitivity to aluminum.

J Cutan Med Surg

Faculty of Medicine, Department of Dermatology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.

Published: October 2009

Purpose: To report two cases of aluminum contact dermatitis caused by different sources.

Methods: Two patients were patch-tested for suspected contact sensitivities.

Results: The results of patch testing revealed aluminum contact dermatitis reactions in both patients.

Conclusion: Aluminum contact dermatitis is a rare finding with many possible etiologies. One should consider aluminum sensitivity when all patch test sites are positive when using aluminum Finn Chambers.

Download full-text PDF

Source
http://dx.doi.org/10.2310/7750.2008.08046DOI Listing

Publication Analysis

Top Keywords

aluminum contact
12
contact dermatitis
12
aluminum
6
contact
5
contact sensitivity
4
sensitivity aluminum
4
aluminum purpose
4
purpose report
4
report cases
4
cases aluminum
4

Similar Publications

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.

View Article and Find Full Text PDF

Molten carbonate salts are a promising candidate for next-generation concentrated solar power technology owing to their excellent heat storage and heat transfer properties. This represents overcoming several problems that structural materials exhibit, including severe corrosion and high-temperature creep. Alloys with an aluminum element are alternatives in this regard as they are highly resistant to corrosive environments.

View Article and Find Full Text PDF

Evaluating export vulnerability through import demand elasticity in carbon border adjustment contexts: a focus on Türkiye.

Environ Sci Pollut Res Int

January 2025

Department of International Trade and Business, Faculty of Economics and Administrative Sciences, Inonu University, 44000, Malatya, Turkey.

Import demand elasticity (IDE) is a critical metric often employed to guide government decisions regarding tariffs and non-tariff barriers, ensuring that foreign trade remains uninterrupted while optimizing tax revenues. This study, however, leverages IDE to assess the impact of the carbon border adjustment mechanism (CBAM) on Türkiye's decarbonization process. Specifically, the research analyzed the total export quantities and unit prices of four product groups-cement, fertilizers, and inorganic chemicals, steel and iron, and aluminum-exported from Türkiye to the European Union-27 countries under the CBAM framework between 2002 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!