Background And Objectives: Mesenchymal stem cells (MSC) are multipotent progenitor cells that are have found use in regenerative medicine. We have previously observed that aspirin, a widely used anti-inflammatory drug, inhibits MSC proliferation. Here we have aimed to elucidate whether aspirin induces MSC apoptosis and whether this is modulated through the Wnt/beta-catenin pathway.
Materials And Methods: Apoptosis of MSCs was assessed using Hoechst 33342 dye and an Annexin V-FITC/PI Apoptosis Kit. Expression of protein and protein phosphorylation were investigated using Western blot analysis. Caspase-3 activity was detected by applying a caspase-3/CPP32 Colorimetric Assay Kit.
Results: In these MSCs, aspirin induced morphological changes characteristic of apoptosis, cytochrome c release from mitochondria, and caspase-3 activation. Stimulating the Wnt/beta-catenin pathway by both Wnt 3a and GSK-3beta inhibitors (LiCl and SB 216763), blocked aspirin-induced apoptosis and protected mitochondrial function, as demonstrated by decreased cytochrome c release and caspase-3 activity. Aspirin initially caused a time-dependent decrease in COX-2 expression but subsequently, and unexpectedly, elevated the latter. Stimulation of COX-2 expression by aspirin was further enhanced following stimulation of the Wnt/beta-catenin pathway. Application of the COX-2 inhibitor NS-398 suppressed elevated COX-2 expression and promoted aspirin-induced apoptosis.
Conclusion: These results demonstrate that the Wnt/beta-catenin pathway is a key modulator of aspirin-induced apoptosis in MSCs by regulation of mitochrondrial/caspase-3 function. More importantly, our findings suggest that aspirin may influence MSC survival under certain conditions; therefore, it should be used with caution when considering regenerative MSC transplantation in patients with concomitant chronic inflammatory diseases such as arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6495846 | PMC |
http://dx.doi.org/10.1111/j.1365-2184.2009.00639.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!