The expression of cell cycle events in Caulobacter crescentus CB13 has been shown to be associated with regulation of carbohydrate utilization. Growth on lactose and galactose depends on induction of specific enzymes. Prior growth on glucose results in a delay in enzyme expression and cell cycle arrest at the nonmotile, predivisional stage. Dibutyryl cyclic adenosine 3',5'-monophosphate (AMP) was shown to stimulate expression of the inducible enzymes and, thus, the initiation of the cell cycle. beta-Galactosidase-constitutive mutants did not exhibit a cell cycle arrest upon transfer of cultures from glucose to lactose. Furthermore, carbon source starvation results in accumulation of the cells at the predivisional stage. The cell cycle arrest therefore results from nutritional deprivation and is analogous to the general control system exhibited by yeast (Hartwell, Bacteriol. Rev. 38:164-198, 1974; Wolfner et al., J. Mol. Biol. 96:273-290, 1975), which coordinates cell cycle initiation with metabolic state. Transfer of C. crescentus CB13 from glucose to mannose did not result in a cell cycle arrest, and it was demonstrated that this carbon source is metabolized by constitutive enzymes. Growth on mannose, however, is stimulated by exogenous dibutyryl cyclic AMP without a concomitant increase in the specific activity of the mannose catabolic enzymes. The effect of cyclic AMP on growth on sugars metabolized by inducible enzymes, as well as on sugars metabolized by constitutive enzymes, may represent a regulatory system common to both types of sugar utilization, since they share features that differ from glucose utilization, namely, temperature-sensitive growth and low intracellular concentrations of cyclic guanosine 3',5'-monophosphate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235553 | PMC |
http://dx.doi.org/10.1128/jb.131.3.951-959.1977 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!