The potential of semiconducting nanocrystals or so-called quantum dots (QDs) for lifetime multiplexing has not been investigated yet, despite the increasing use of QDs in (bio)analytical detection, biosensing, and fluorescence imaging and the obvious need for simple and cost-effective tools and strategies for the simultaneous detection of multiple analytes or events. This is most likely related to their multiexponential decay behavior as for multiplex chromophores, typically monoexponential decay kinetics are requested. The fluorescence decay kinetics of various mixtures of a long-lived, multiexponentially decaying CdSe QD and a short-lived organic dye were analyzed, and a model was developed for the quantification of these labels from the measured complex decay kinetics as a first proof-of-concept for the huge potential of these labels for lifetime multiplexing. In a second step, we evaluated the potential of mixtures of two types of QDs, varying in constituent material to realize distinguishable, yet multiexponential decay kinetics and similar absorption and emission spectra. Strategies for lifetime multiplexing with nanocrystalline labels were derived on the basis of these measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac900934a | DOI Listing |
JAMA Netw Open
January 2025
City of Hope National Medical Center, Duarte, California.
Importance: Enhanced breast cancer screening with magnetic resonance imaging (MRI) is recommended to women with elevated risk of breast cancer, yet uptake of screening remains unclear after genetic testing.
Objective: To evaluate uptake of MRI after genetic results disclosure and counseling.
Design, Setting, And Participants: This multicenter cohort study was conducted at the University of Southern California Norris Cancer Hospital, the Los Angeles General Medical Center, and the Stanford University Cancer Institute.
Nat Commun
January 2025
TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.
Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.
View Article and Find Full Text PDFNeuro Endocrinol Lett
December 2024
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Background: Severe or recurring major depression is associated with increased adverse childhood experiences (ACEs), heightened atherogenicity, and immune-linked neurotoxicity (INT). Nevertheless, the interconnections among these variables in outpatient major depression (OMDD) have yet to be determined. We aim to determine the correlations among INT, atherogenicity, and ACEs in OMDD patients compared to normal controls.
View Article and Find Full Text PDFHolographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!