Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining.

J Agric Food Chem

Instituto de Ciencias de la Vid y del Vino (CSIC-UR-CAR) Logrono (La Rioja), Spain.

Published: September 2009

Bentonite fining is used in the clarification of white wines to prevent protein haze. This treatment results in the loss of a significant portion of the wine itself, as well as aroma compounds important for the quality of white wines. Among other interesting effects on wine quality, yeast cell wall mannoproteins have been shown to stabilize wine against protein haze. A previous work showed that wine yeast strains engineered by deletion of KNR4 release increased amounts of mannoproteins and produce wines showing attenuated responses in protein haze tests. This paper describes the technological properties of several new recombinant wine yeast strains, deleted for genes involved in cell-wall biogenesis, as well as the regulatory gene KNR4. Stabilization of wines produced by three of the six recombinant strains analyzed required 20-40% less bentonite than those made with their nonrecombinant counterparts. The availability of multiple targets for genetically improving yeast mannoprotein release, as shown in this work, is relevant not only for genetic engineering of wine yeast but especially for the feasibility of genetically improving this character by classical methods of strain development such as random mutagenesis or sexual hybridization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf901093vDOI Listing

Publication Analysis

Top Keywords

wine yeast
16
yeast strains
12
protein haze
12
bentonite fining
8
white wines
8
genetically improving
8
wine
7
yeast
6
three targets
4
targets genetic
4

Similar Publications

Untargeted LC-HRMS analyses reveal metabolomic specificities between wine yeast strains selected for their malic acid production.

Food Chem

December 2024

BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France; UMR OENO, Université de Bordeaux, INRAE, INP, BSA, ISVV, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France. Electronic address:

The alcoholic fermentation of wine is mostly achieved by the species Saccharomyces cerevisiae that display a large variability for their ability to consume or produce malic acid. To better characterize the metabolism of such group of strains we explored their non-volatile metabolome using an untargeted LC-HRMS approach. The chemical classes and the putative structures of several hundred compounds where annotated using MS2 spectra using the SIRIUS software.

View Article and Find Full Text PDF

Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods.

View Article and Find Full Text PDF

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.

View Article and Find Full Text PDF

Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function.

Food Res Int

January 2025

Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China. Electronic address:

Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!