Four novel 1,3-alternate calix[4]arene-bonded silica gel stationary phases possessing different aromatic and aliphatic substituents at the upper rim (CalixNph, CalixBph, CalixHex, and CalixDdc) were prepared and structurally characterized. The comparison and selectivity of these phases were done by using alkylbenzenes, fatty acid p-bromophenacyl esters, aromatic positional isomers, and polynuclear aromatic hydrocarbons as analytes. Quantum chemistry calculations have also been performed (using an ab initio method) to support the experimental findings. The effect of the type and content of organic modifier on the retention and selectivity of the alkylbenzenes was studied. The retention mechanism is also discussed. The results indicate that the stationary phases behave like RP packings. However, inclusion complex formation and hydrophobic and pi-pi interactions seem to be involved in the separation process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.200900330DOI Listing

Publication Analysis

Top Keywords

stationary phases
12
13-alternate calix[4]arene-bonded
8
calix[4]arene-bonded silica
8
retention mechanism
8
silica stationary
4
phases
4
phases calixarene
4
calixarene skeleton
4
skeleton substituents
4
substituents retention
4

Similar Publications

Log BB Prediction Models Using TLC and HPLC Retention Values as Protein Affinity Data.

Pharmaceutics

November 2024

Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland.

Background: The penetration of drugs through the blood-brain barrier is one of the key pharmacokinetic aspects of centrally acting active substances and other drugs in terms of the occurrence of side effects on the central nervous system. In our research, several regression models were constructed in order to observe the connections between the active pharmaceutical ingredients' properties and their bioavailability in the CNS, presented in the form of the log BB parameter, which refers to the drug concentration on both sides of the blood-brain barrier.

Methods: Predictive models were created using the physicochemical properties of drugs, and multiple linear regression and a data mining method, i.

View Article and Find Full Text PDF

Cuatrec. and (Kunth) Cass.: Chemical and Enantioselective Analyses of Two Unprecedented Essential Oils from Ecuador.

Plants (Basel)

December 2024

Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador.

This study presents the first chemical and enantioselective analyses of essential oils (EOs) derived from the leaves of two endemic species, Cuatrec. and (Kunth) Cass., from Loja, Ecuador.

View Article and Find Full Text PDF

Leishmaniases affect millions of people around the world, caused by Leishmania parasites. Leishmania are transmitted by female sandflies from Phlebotominae subfamily during their blood meals. In mammals, promastigotes are phagocytosed mainly by macrophages, differentiate into amastigotes and multiply.

View Article and Find Full Text PDF

The bacterial transcription terminator Rho is a hexameric ATP-dependent RNA helicase that dislodges elongating RNA polymerases.  It has an N-terminal primary RNA binding site (PBS) on each subunit and a C-terminal secondary RNA binding site at the central channel. Here, we show that Rho also binds to linear longer double-stranded DNAs (dsDNA) and the circular plasmids non-specifically using its PBS.

View Article and Find Full Text PDF

A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!