Ethylene modifies architecture of root system in response to stomatal opening and water allocation changes between root and shoot.

Plant Signal Behav

INRA, UMR 950, Laboratoire d'Ecophysiologie Végétale, Agronomie & Nutritions N,C,S, Caen, France.

Published: January 2009

Ethylene plays a key role in the elongation of exploratory and root hair systems in plants, as demonstrated by pharmacological modulation of the activity of ethylene biosynthesis enzymes: ACC synthase (ACS) and ACC oxidase (ACO). Thus, treatments with high concentrations (10 microM) of aminoethoxyvinylglycine (AVG, inhibitor of ACS) and 1-aminocyclopropane carboxylic acid (ACC, ethylene precursor, ACO activator) severely decrease the elongation of the exploratory root system but induce opposite effects on the root hair system: root hair length and numbers were increased in seedlings treated with ACC, whereas they were reduced in seedlings treated with AVG. Until now, such elongation changes of root architecture had not been questioned in terms of nitrate uptake. In the march issue of Plant Physiology we report that N uptake and nitrate transporter BnNrt2.1 transcript level were markedly reduced in ACC treated seedlings, but were increased in AVG treated seedlings compared to the control.1 Because recent studies have revealed that ethylene can also modulate stomatal opening as well as root hair cell elongation, we have examined whether pharmacological modulation of ethylene biosynthesis could affect, in an integrated manner, and at a whole-plant level, the exploratory and root hair systems, through changes of stomatal conductance and water allocation between the root and shoot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634070PMC
http://dx.doi.org/10.4161/psb.4.1.7268DOI Listing

Publication Analysis

Top Keywords

root hair
20
exploratory root
12
root
10
root system
8
stomatal opening
8
water allocation
8
changes root
8
root shoot
8
elongation exploratory
8
hair systems
8

Similar Publications

Endophytic Bacteria from the Desiccation-Tolerant Plant and Their Potential as Plant Growth-Promoting Microorganisms.

Microorganisms

December 2024

Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.

Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.

View Article and Find Full Text PDF

Horses are animals traditionally playing prominent role as both food source and working animals for Kazakh people. Zhabe horses are traditional type of indigenous Kazakh horses characterized by versatility and adaptation to conditions of Central Asia. The present work focuses on examination of genetic structure of Zhabe horses using SNP genotyping with addition of previously published data.

View Article and Find Full Text PDF

Background: Hair thinning in men is a prevalent issue for which treatment oftentimes consists of a multi-modal approach. Targeting key root causes of hair thinning, such as hormones, stress, and metabolism through vitamins, minerals, and botanicals, has been shown to be effective in improving hair growth and quality in women. This approach could also be effective in improving hair growth and quality in men with thinning hair.

View Article and Find Full Text PDF

The root epidermis of Arabidopsis (Arabidopsis thaliana) consists of two distinct cell types: hair (H) cells and non-hair (N) cells, whose patterning is regulated by a network of genes. Among these, the WEREWOLF (WER) gene, encoding an R2R3 MYB transcription factor, acts as a master regulator by promoting the expression of key downstream genes, such as GLABRA2 and CAPRICE. However, the mechanisms controlling WER expression have remained largely unexplored.

View Article and Find Full Text PDF

Regulatory mechanisms of trichome and root hair development in Arabidopsis.

Plant Mol Biol

December 2024

Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.

In plants, cell fate determination is regulated temporally and spatially via a complex of signals consisting of a large number of genetic interactions. Trichome and root hair formation are excellent models for studying cell fate determination in plants. Nowadays, the mysteries underlying the reprograming of trichome and root hair and how nature programs the development of trichome and root hair is an interesting topic in the scientific field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!