Reactive oxygen species have been suggested to play a signaling role in seed dormancy alleviation. When sunflower seeds become able to fully germinate during dry after-ripening, they accumulate high amount of hydrogen peroxide and exhibit a low detoxifying ability through catalase, resulting from the decrease in CATA1 transcript. ROS accumulation entails oxidative modification of soluble and storage proteins through carbonylation, which suggests that this process might play an important role in plant developmental processes. However other oxidative signaling pathways cannot be excluded. For example, a cDNA-AFLP study shows that seed after-ripening is also associated with changes in gene expression and that changes in ROS content during seed imbibition are also related to changes in expression pattern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634212PMC
http://dx.doi.org/10.4161/psb.2.5.4460DOI Listing

Publication Analysis

Top Keywords

seed dormancy
8
dormancy alleviation
8
ros signaling
4
seed
4
signaling seed
4
alleviation reactive
4
reactive oxygen
4
oxygen species
4
species suggested
4
suggested play
4

Similar Publications

The phosphatidylethanolamine-binding protein (PEBP) family members FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) are major regulators of plant reproduction. In Arabidopsis, the FT/TFL1 balance defines the timing of floral transition and the determination of inflorescence meristem identity. However, emerging studies have elucidated a plethora of previously unknown functions for these genes in various physiological processes.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Exploring the Role of Carbon Monoxide in Seed Physiology: Implications for Stress Tolerance and Practical Uses.

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.

View Article and Find Full Text PDF

The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch ( Mayr), which can survive under natural conditions (down to -60 °C) in the cryolithozone of Yakutia, is the dominant forest-forming species. We hypothesise that our study using HPTLC-UV/Vis/FLD, TLC-GC/FID, and GC-MS methods of seasonal features of the lipid profile of Kajander larch tissues will bring us closer to understanding the mechanisms of participation of lipid components in the adaptation of this valuable tree species to the cold climate of the cryolithozone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!