Cocultivation of MOLT-4 and MOLT-4/HIVHTLV-IIIB cells with more than 0.01 ng/ml of 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 hr strikingly inhibited HIV-induced syncytia formation resulting from cell to cell infection. Interestingly, the production of HIV-specific p24 antigen in the culture fluid was significantly enhanced by TPA. TPA down-modulated the expression of CD4. CD4 is essential for syncytia formation through interaction with viral envelope protein gp120 on the surface of MOLT-4 cells. The effects of TPA on syncytia formation and on CD4 expression were specifically interfered with by nontoxic doses of blockers of protein kinase C (PKC) such as staurosporine and H7. These data suggest that (1) TPA inhibits HIV-induced syncytia formation through down-modulation of CD4 molecules on the surface of MOLT-4 cells and (2) PKC may play an important role in cell to cell as well as in cell-free infection of HIV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0042-6822(90)90237-lDOI Listing

Publication Analysis

Top Keywords

syncytia formation
20
tpa inhibits
8
protein kinase
8
hiv-induced syncytia
8
cell cell
8
surface molt-4
8
molt-4 cells
8
tpa
6
syncytia
5
formation
5

Similar Publications

Background: Cosmetic injections are increasing, as their complications, which can be misdiagnosed as neoplastic lesions. This study aimed to detail clinical, pathological, histochemical, and immunohistochemical features of adverse reactions to cosmetic fillers in the oral and maxillofacial region.

Methods: Samples were retrieved from five pathology laboratories.

View Article and Find Full Text PDF

The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive and a Gram-negative .

View Article and Find Full Text PDF

SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.

View Article and Find Full Text PDF

Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.

View Article and Find Full Text PDF

New insights into persistent corneal subepithelial infiltrates following epidemic keratoconjunctivitis: The first case report with ultrastructural and immunohistochemical investigations.

Acta Histochem

January 2025

Section of Anatomy and Histology, Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence 50134, Italy. Electronic address:

Epidemic keratoconjunctivitis (EKC) is one of the most severe clinical manifestations of human adenovirus ocular surface infection, which may lead to the formation of subepithelial infiltrates (SEIs) in the anterior corneal stroma in 20-50 % of cases. SEIs may be asymptomatic or give rise to corneal aberrations and visual impairment for months or years after acute infection, despite treatments. Here, we describe the ultrastructural and immunophenotypic features of the anterior corneal stroma of a patient who underwent superficial anterior lamellar keratoplasty (SALK) surgery to remove corneal opacities related to clinically significant and steroid-unresponsive, long-lasting SEIs after adenoviral EKC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!