Electrophysiological studies, using chloral hydrate-anesthetized rats, were undertaken to determine whether hippocampal pyramidal neurons, receiving input from the medial septal nucleus, were affected by 5-hydroxytryptamine (5-HT) derived from the dorsal raphe nucleus. The pyramidal neurons in the CA1 region of the hippocampus were classified into short- and long-latency neurons, based on their response to stimulation of the medial septal nucleus. Microiontophoretically applied atropine inhibited the generation of spikes upon stimulation of the medial septal nucleus in short-latency neurons, but had no effect on long-latency neurons. In the short-latency neurons, the stimulation-induced spikes of the medial septal nucleus were inhibited by conditioning stimuli applied to the dorsal raphe nucleus and iontophoretic application of 5-HT and the 5-HT1A agonists, SM-3997 (3 a alpha,4 beta,7 beta,7a alpha-hexahydro-2-(4-(4-(2-pyrimidinyl)-1- piperazinyl)-butyl)-4,7-methano-1H-isoindole-1,3(2H)-dione dihydrogen citrate) and 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin). The conditioning effect of the dorsal raphe nucleus was antagonized by methysergide. However, in the long-latency neurons, the spikes elicited by stimulation of the medial septal nucleus were not affected by the conditioning stimulation of the dorsal raphe nucleus, or iontophoretically applied 5-HT. These results indicate that 5-HT, originating in the dorsal raphe nucleus inhibited hippocampal pyramidal neurons receiving cholinergic input from the medial septal nucleus, but not those receiving non-cholinergic input from the medial septal nucleus. The drug SM-3997 inhibited the activity of hippocampal pyramidal neurons, that receive excitatory cholinergic input from the medial septal nucleus by acting on 5-HT1A receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0028-3908(90)90048-v | DOI Listing |
Indian J Ophthalmol
February 2025
Department of Oculoplasty and Oncology Services (Dr. Rajendra Prasad Centre for Ophthalmic Sciences), AIIMS, New Delhi, India.
Background: Involution or aging is the most common cause of lower eyelid entropion (in-turning of eyelid margin) in the elderly population. Various pathomechanisms have been postulated for its occurrence. Aging leads to laxity of tissues and loss of muscle tone.
View Article and Find Full Text PDFNeurosci Res
January 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin, Aichi 470-0196, Japan. Electronic address:
Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. The detailed in vivo relationships of STB/HAP1 with endogenous HTT, however, have not been clarified yet.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, Illinois, United States.
The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Kartal Dr.Lütfi Kırdar City Hospital, Radiology Clinic, İstanbul, Turkey.
Purpose: To compare the nasolacrimal and nasal anatomical parameters in cases of acquired primary nasolacrimal duct obstruction and acute dacryocystitis.
Methods: The study included 62 eyes of 31 patients. The eyes were divided into three groups: Group A, comprising eyes presenting with acute dacryocystitis; Group B, comprising eyes with nasolacrimal duct obstruction but no previous episodes of dacryocystitis; and Group C, comprising eyes with an patent nasolacrimal duct.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!