The mitochondrial F(1)F(0)-ATP synthase adopts supramolecular structures. The interaction domains between monomers involve components belonging to the F(0) domains. In Saccharomyces cerevisiae, alteration of these components destabilizes the oligomeric structures, leading concomitantly to the appearance of monomeric species of ATP synthase and anomalous mitochondrial morphologies in the form of onion-like structures. The mitochondrial ultrastructure at the cristae level is thus modified. Electron microscopy on cross-sections of wild type mitochondria display many short cristae with narrowed intra-cristae space, whereas yeast mutants defected in supramolecular ATP synthases assembly present a low number of large lamellar cristae of constant thickness and traversing the whole organelle. The growth of these internal structures leads finally to mitochondria with sphere-like structures with a mean diameter of 1 microm that are easily identified by epifluorescence microscopy. As a result, ATP synthase is an actor of the mitochondrial ultrastructure in yeast. This paper reviews the ATP synthase components whose modifications lead to anomalous mitochondrial morphology and also provides a schema showing the formation of the so-called onion-like structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2009.01.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!