Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prion infections of the central nervous system (CNS) are characterized by a reactive gliosis and the subsequent degeneration of neuronal tissue. The activation of glial cells, which precedes neuronal death, is likely to be initially caused by the deposition of misfolded, in part proteinase K-resistant, isoforms (termed PrP(TSE)) of the normal cellular prion protein (PrP(c)) in the brain. Proinflammatory cytokines and chemokines released by PrP(TSE)-activated glial cells and stressed neurons may contribute directly or indirectly to the disease development by enhancement and generalization of the gliosis and via cytotoxicity for neurons. Recent studies have illustrated that interfering with inflammatory responses may represent a therapeutic approach to slow down the course of disease development. Hence, a better understanding of driving factors in neuroinflammation may well contribute to the development of improved strategies for treatment of prion diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/187152709789542014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!