Aptamers as innovative diagnostic and therapeutic agents in the central nervous system.

CNS Neurol Disord Drug Targets

Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR G. Salvatore, Via S. Pansini 5, 80131 Naples, Italy.

Published: November 2009

Aptamers are short non-naturally occurring single stranded DNA or RNA able to bind tightly, due to their specific three-dimensional shapes, to a multitude of targets ranging from small chemical compounds to cells and tissues. Since their first discovery, aptamers became a valuable research tool and show great application to fundamental research, drug selection and clinical diagnosis and therapy. Thanks to their unique characteristics (low size, good affinity for the target, no immunogenicity, chemical structures that can be easily modified to improve their in vivo applications), aptamers may represent a valid alternative to antibodies particularly for the treatment of neurological disorders that urgently needs modalities for drug delivery through the blood brain barrier. Aptamers have excellent potential as reagents for the targeted delivery of active drug substances, either through direct conjugation to the aptamer, or through their encapsulation in aptamer-coated vesicles. We will review here the recent and innovative methods that have been developed and the possible applications of aptamers as inhibitors or tracers in neurological disorders and brain cancer.

Download full-text PDF

Source
http://dx.doi.org/10.2174/187152709789542023DOI Listing

Publication Analysis

Top Keywords

applications aptamers
8
neurological disorders
8
aptamers
6
aptamers innovative
4
innovative diagnostic
4
diagnostic therapeutic
4
therapeutic agents
4
agents central
4
central nervous
4
nervous system
4

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!