The CYP2A6 gene spans a region of approximately 6 kb pairs consisting of 9 exons and has been mapped to the long arm of chromosome 19 (between 19q12 and 19q13.2). The CYP2A6 protein has 494 amino acids and is an important hepatic Phase I enzyme that metabolizes approximately 3% of therapeutic drugs (n > 30; e.g. valproic acid, pilocarpine, tegafur, fadrozole, ifosfamide, cyclophosphamide, nicotine, tamoxifen, promazine, propofol, and cisapride), environmental toxicants (e.g. gasoline additives), and many procarcinogens such as nitrosamines and aflatoxin B(1). This enzyme also participates in the biotransformation of several endogenous compounds such as retinoid acids and steroids. Because CYP2A6 is responsible for 70-80% of the initial metabolism of nicotine, CYP2A6 has been proposed to be a novel target for smoking cessation. Site-directed mutagenesis and homology modeling studies have identified a number of amino acids (e.g. F300, A301, S208, S369, and L370) that play a role in substrate recognition and binding. CYP2A6 shows a crystal structure with a compact, hydrophobic active site with Asn297 serving as one hydrogen bond donor and orienting substrates for regio-selective oxidation. CYP2A6 contains the second smallest active site cavity among the human CYPs with known structures. The regulation mechanism of CYP2A6 expression is not fully understood, but available data suggest that several nuclear receptors including constitutive androstane receptor, pregnane X receptor and glucocorticoid receptor are involved in its regulation. Pilocarpine and tranylcypromine are commonly used as selective competitive inhibitors of CYP2A6. Selegiline, methoxsalen, (R)-(+) menthofuran and decursinol angelate are mechanism-based inhibitors of CYP2A6. Both in vitro and in vivo studies have demonstrated a wide (20- to >100-fold) interindividual variation in CYP2A6 expression and activity, which is due primarily to genetic polymorphisms in the CYP2A6 gene, but CYP2A6 activity is also modified by certain drugs and pathological and environmental factors. To date, more than 36 variant alleles (*1B through *37) of the CYP2A6 gene have been identified. There have been 278 SNPs found in the CYP2A6 upstream sequence, 8 introns and 9 exons in NCBI dbSNP. Polymorphism of CYP2A6 has been associated with smoking behavior, drug clearance and lung cancer risk. Further studies are warranted to explore the role of CYP2A6 in clinical practice, drug development and toxicology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138920009789895507 | DOI Listing |
Pharmaceutics
December 2024
College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
: Perillyl alcohol (POH), a monoterpene natural product derived from the essential oils of plants such as perilla (), is currently in phase I and II clinical trials as a chemotherapeutic agent. In this study, we investigated the effect of POH on cytochrome P450 (CYP) activity for evaluating POH-drug interaction potential. : The investigation was conducted using pooled human liver microsomes (HLMs), recombinant CYP3A4 (rCYP3A4) enzymes, and human pluripotent stem cell-derived hepatic organoids (hHOs) employing liquid chromatography-tandem mass spectrometry.
View Article and Find Full Text PDFSci Rep
December 2024
National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.
View Article and Find Full Text PDFBMC Pulm Med
December 2024
Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Chronic obstructive pulmonary disease (COPD) is closely linked to lung cancer (LC) development. The aim of this study is to identify the genetic and clinical risk factors for LC risk in COPD, according to which the prediction model for LC in COPD was constructed.
Methods: This is a case-control study in which patientis with COPD + LC as the case group, patientis with only COPD as the control group, and patientis with only LC as the second control group.
Nicotine Tob Res
December 2024
Department of Public Health, Medical University of South Carolina, Charleston SC.
Introduction: Genetic studies of smoking cessation have been limited by short-term follow-up or cross-sectional design. Within seven genes (CHRNA3, CHRNA5, CHRNB2, CHRNB4, DRD2, DBH and CYP2A6) influencing biological mechanisms relevant to smoking, this study aimed to identify single nucleotide polymorphisms (SNPs) associated with smoking cessation throughout up to 38-years of follow-up.
Methods: Participants were from two all-female cohort studies, Nurses' Health Study (NHS) (n = 10,017) and NHS-2 (n = 2,793).
Clin Transl Sci
December 2024
Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Dexmedetomidine is a centrally acting alpha-2 agonist used for initiation and maintenance of procedural sedation and mechanical ventilation in adult and pediatric settings. It is commonly used in both pediatric and neonatal intensive care units. Dexmedetomidine requires extensive titration, and patients can be over or under-sedated during titration, leading to adverse events such as hypotension and bradycardia, or inadequate sedation, which can result in self-extubation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!