We tested the hypothesis that the reactive oxygen species (ROS) produced at rest and mostly during muscle contraction may stimulate the group IV muscle afferents. In rats, afferent activity was recorded in the peroneal nerve innervating the tibialis anterior muscle. Group IV afferents were identified from measurements of their conduction velocity and response to lactic acid. Comparing the group IV response to an intramuscular injection of buffered isotonic NaCl solution, we searched for the effects of a ROS donor (H2O2) or a ROS inhibitor (superoxide dismutase, SOD) on the baseline afferent activity in resting muscles. We also explored the consequences of a pre-treatment with SOD on the afferent nerve response to H2O2 injection or electrical muscle stimulation (MS). In other animals, we measured the changes in intramuscular level of a marker of oxidative stress (isoprostanes) after each test agent. H2O2 injection markedly activated all recorded group IV afferents. SOD injection lowered the baseline activity of 50 out of 70 afferent units, suppressed the afferent response to H2O2 injection, and delayed and reduced the MS-induced activation of all recorded units. Intramuscular isoprostanes level significantly increased after H2O2 injection or MS, the oxidative stress being absent in muscles pre-treated with SOD. We concluded that ROS influence both the spontaneous and contraction-induced activities of the group IV muscle afferents and are a potent stimulus of muscle metaboreceptors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-009-0713-8DOI Listing

Publication Analysis

Top Keywords

h2o2 injection
16
group muscle
12
muscle afferents
12
reactive oxygen
8
oxygen species
8
muscle
8
afferent activity
8
group afferents
8
response h2o2
8
oxidative stress
8

Similar Publications

Cotreatment strategy for hazardous arsenic-calcium residue and siderite tailings via arsenic fixation as scorodite.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Siderite tailings is a potentially cost-free iron (Fe) source for arsenic (As) fixation in hazardous arsenic-calcium residues (ACR) as stable scorodite. In this study, a pure siderite reagent was employed to investigate the mechanism and optimal conditions for As fixation in ACR via scorodite formation, while the waste siderite tailings were used to further demonstrate the cotreatment method. The cotreatment method starts with an introduction of sulfuric acid to the ACR for As extraction and gypsum precipitation, and is followed by the addition of HO to oxidize As(III) in the extraction solutions and finalized by adding siderite with continuous air injection for scorodite formation.

View Article and Find Full Text PDF

Abnormal base excision repair (BER) pathway and N6-methyladenosine (m6A) of RNA have been proved to be significantly related to age-related cataract (ARC) pathogenesis. However, the relationship between the Nei Endonuclease VIII-Like1 (NEIL1) gene (a representative DNA glycosylase of BER pathway) and its m6A modification remains unclear. Here, we showed that the expression of NEIL1 was decreased in the ARC anterior lens capsules and HO-stimulated SRA01/04 cells.

View Article and Find Full Text PDF

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Lipopolysaccharide preconditioning disrupts the behavioral and molecular response to restraint stress in male mice.

Neuroscience

January 2025

Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Major depressive disorder (MDD) is a complex neuropsychiatric disorder potentially influenced by factors such as stress and inflammation. Chronic stress can lead to maladaptive brain changes that may trigger immune hyperactivation, contributing to MDD's pathogenesis. While the involvement of inflammation in MDD is well established, the effects of inflammatory preconditioning in animals subsequently exposed to chronic stress remain unclear.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!