Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mesophilic bacterial culture producing a novel thermostable alkaline lipase was isolated from oil rich soil sample and identified as Bacillus subtilis EH 37. The lipase was partially purified by ammonium sulfate precipitation and hydrophobic interaction chromatography with 17.8-fold purification and 41.9 U/ml specific activity. The partially purified enzyme exhibited maximum activity at pH 8.0 and at 60 degrees C. It retained 100% of activity at 50 degrees C and 60 degrees C for 60 min. The presence of Ca2+, Mg2+, and Zn2+ exhibited stimulatory effect on lipase activity, whereas Fe3+ and Co2+ reduced its activity. The enzyme retained more than 80% of its initial activity upon exposure to organic solvents, exhibited 107% and 115% activity in the presence of 15% isopropyl alcohol and 30% n-hexane, respectively. The EH 37 lipase also proved to be an efficient catalyst in synthesis of ethyl caprylate in organic solvent, thus providing a concept of application of B. subtilis lipase in non-aqueous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-009-8751-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!