Elucidating the gene regulatory networks that govern pharyngeal arch artery (PAA) development is an important goal, as such knowledge can help to identify new genes involved in cardiovascular disease. The transcription factor Tbx1 plays a vital role in PAA development and is a major contributor to cardiovascular disease associated with DiGeorge syndrome. In this report, we used various genetic approaches to reveal part of a signalling network by which Tbx1 controls PAA development in mice. We investigated the crucial role played by the homeobox-containing transcription factor Gbx2 downstream of Tbx1. We found that PAA formation requires the pharyngeal surface ectoderm as a key signalling centre from which Gbx2, in response to Tbx1, triggers essential directional cues to the adjacent cardiac neural crest cells (cNCCs) en route to the caudal PAAs. Abrogation of this signal generates cNCC patterning defects leading to PAA abnormalities. Finally, we showed that the Slit/Robo signalling pathway is activated during cNCC migration and that components of this pathway are affected in Gbx2 and Tbx1 mutant embryos at the time of PAA development. We propose that the spatiotemporal control of this tightly orchestrated network of genes participates in crucial aspects of PAA development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730371 | PMC |
http://dx.doi.org/10.1242/dev.028902 | DOI Listing |
Polymers (Basel)
January 2025
Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.
View Article and Find Full Text PDFFoods
January 2025
Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.
View Article and Find Full Text PDFGels
December 2024
Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
Developing an exceptional reaction medium with high promotion efficiency, desirable biodegradability and good recyclability is necessary for hydrate-based methane storage. In this work, a kind of eco-friendly hydrogel, polyvinyl alcohol-co-acrylic acid (PVA-co-PAA), was utilized to absorb dilute sodium p-styrenesulfonate (SS) solution, for constructing a hybrid reaction medium for methane hydrate formation. Hydrogels or dilute SS solutions (1-4 mmol L) had weak or even no promoting effects on hydrate formation kinetics, while the combination of them could synergistically promote methane hydrate formation.
View Article and Find Full Text PDFEnviron Res
January 2025
Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!