Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems.

Appl Environ Microbiol

Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA.

Published: October 2009

Whole-cell biocatalysis to oxidize naphthalene to 1-naphthol in liquid-liquid biphasic systems was performed. Escherichia coli expressing TOM-Green, a variant of toluene ortho-monooxygenase (TOM), was used for this oxidation. Three different solvents, dodecane, dioctyl phthalate, and lauryl acetate, were screened for biotransformations in biphasic media. Of the solvents tested, lauryl acetate gave the best results, producing 0.72 +/- 0.03 g/liter 1-naphthol with a productivity of 0.46 +/- 0.02 g/g (dry weight) cells after 48 h. The effects of the organic phase ratio and the naphthalene concentration in the organic phase were investigated. The highest 1-naphthol concentration (1.43 g/liter) and the highest 1-naphthol productivity (0.55 g/g [dry weight] cells) were achieved by optimization of the organic phase. The ability to recycle both free cells and cells immobilized in calcium alginate was tested. Both free and immobilized cells lost more than approximately 60% of their activity after the first run, which could be attributed to product toxicity. On a constant-volume basis, an eightfold improvement in 1-naphthol production was achieved using biphasic media compared to biotransformation in aqueous media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765131PMC
http://dx.doi.org/10.1128/AEM.00434-09DOI Listing

Publication Analysis

Top Keywords

organic phase
12
whole-cell biocatalysis
8
1-naphthol production
8
liquid-liquid biphasic
8
biphasic systems
8
lauryl acetate
8
biphasic media
8
1-naphthol productivity
8
highest 1-naphthol
8
1-naphthol
6

Similar Publications

Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.

View Article and Find Full Text PDF

Metal-organic frameworks generated from oligomeric ligands with functionalized tethers.

Chem Sci

December 2024

Department of Chemistry and Biochemistry, University of California, San Diego La Jolla California 92093 USA

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (Hbdc) groups of the dimer ligands.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

During use of sodium hypochlorite bleach, gas-phase hypochlorous acid (HOCl) and chlorine (Cl) are released, which can react with organic compounds present in indoor air. Reactivity between HOCl/Cl and limonene, a common constituent of indoor air, has been observed. The purpose of this study was to characterize the chemical species generated from gas-phase reactions between HOCl/Cl and limonene.

View Article and Find Full Text PDF

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!