Background: The high-pass filter (HPF) in an electrocardiogram (ECG) amplifier can distort the ST segment required for ischemia interpretation. Therefore, the current standards and guidelines require -3 dB for monitoring and -0.9 dB for diagnostic purposes at 0.67 Hz. In addition, a minimal reaction to a rectangular pulse of 300 microV has to be proven. We raise the question of why the design of a DC-coupled digital ECG amplifier is reasonable when today the AC-coupled digital ECG amplifier including a 0.05-Hz HPF works so well, meets all required standards, and is already safe. We make the hypothesis that a digital DC-coupled ECG amplifier can as well meet the requirements and guarantee the same safety levels at the same time provide a higher degree of freedom for future improvements of the ECG signal quality.
Methods: Firstly, a historical research of the origin of the 0.05-Hz requirement has been made. Secondly, triangular pulses simulating unipolar QRS complexes have been passed through a digital filter to get qualitative results of the HPF response. And finally, to quantitatively describe the filter response, corresponding test requirement signals have been passed through a digital filter to simulate the HPF behavior, therefore understanding the reasons for the required tests.
Results: The oldest reference found to the 0.05-Hz filter dates from 1937. At that time, DC-coupled analogue ECG amplifiers were used. The simulation of the AC-coupled ECG amplifier with a first-order analogue HPF shows that the rectangular 300-microV pulse is a phase requirement and more restrictive than the frequency requirements. The phase requirement in fact corresponds to the requirement of a 0.05-Hz first-order analogue HPF (-3 dB) even if -0.9 dB at 0.67 Hz is required. The DC-coupled ECG amplifier (without an analogue HPF and during online and off-line acquisition) fulfils the phase and frequency requirements, just as the digital AC-coupled ECG amplifier does.
Conclusions: An AC-coupled ECG amplifier based on a first-order analogue HPF must have a maximum cutoff frequency of 0.05 Hz or requires a phase equalizer causing a delay of the acquired ECG. Because the desired delay during online acquisition should be short, the solution is practical but could be improved. Not the frequency cutoff of the HPF but the phase distortion of such a filter should be discussed. The DC-coupled ECG amplifier is as safe as the AC-coupled ECG amplifier; but it provides a higher degree of freedom for future filter designs certainly improving the ECG signal quality, while the safety can be guaranteed. Furthermore, the DC-coupled ECG amplifier allows investigation of the HPF, which is not easily possible when an AC-coupled ECG amplifier including the HPF is to be investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelectrocard.2009.07.012 | DOI Listing |
Bioengineering (Basel)
December 2024
School of Innovation, Design and Engineering, Division of Intelligent Future Technologies, Mälardalens University, 721 23 Västerås, Sweden.
Cardiovascular diseases are some of the underlying reasons contributing to the relentless rise in mortality rates across the globe. In this regard, there is a genuine need to integrate advanced technologies into the medical realm to detect such diseases accurately. Moreover, numerous academic studies have been published using AI-based methodologies because of their enhanced accuracy in detecting heart conditions.
View Article and Find Full Text PDFSensors (Basel)
October 2024
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
Smart clothes equipped with flexible sensing systems provide a comfortable means to track health status in real time. Although these sensors are flexible and small, the core signal-processing units still rely on a conventional printed circuit board (PCB), making current health-monitoring devices bulky and inconvenient to wear. In this study, a printed fabric-based hybrid circuit was designed and prepared-with a series of characteristics, such as surface/sectional morphology, electrical properties, and stability-to study its reliability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
Acute myocardial infarction (AMI) is one of the leading causes of human mortality worldwide. In the early stages of AMI, the patient's electrocardiogram (ECG) may not change, so the fast, sensitive, and accurate detection of the specific biomarker of cardiac troponin I (cTnI) is of great importance in the early diagnosis of AMI. In this work, for the first time, electrostatic nanoaggregates of negatively charged Au nanoparticles and positively charged trisbipyridine ruthenium(II) ions (i.
View Article and Find Full Text PDFPharmacogenet Genomics
January 2025
Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan.
This paper introduces a wirelessly powered multimodal animal physiological monitoring application-specific integrated circuit (ASIC). Fabricated in the 180 nm process, the ASIC can be integrated into an injectable device to monitor subcutaneous body temperature, electrocardiography (ECG), and photoplethysmography (PPG). To minimize the device size, the ASIC employs a miniature receiver (Rx) coil for wireless power receiving and data communication through a single inductive link operating at 13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!