Pseudomonas aeruginosa: a formidable and ever-present adversary.

J Hosp Infect

Department of Microbiology, Harrogate District Hospital, Lancaster Park Road, Harrogate, North Yorkshire HG2 7SX, UK.

Published: December 2009

Pseudomonas aeruginosa is a versatile pathogen associated with a broad spectrum of infections in humans. In healthcare settings the bacterium is an important cause of infection in vulnerable individuals including those with burns or neutropenia or receiving intensive care. In these groups morbidity and mortality attributable to P. aeruginosa infection can be high. Management of infections is difficult as P. aeruginosa is inherently resistant to many antimicrobials. Furthermore, treatment is being rendered increasingly problematic due to the emergence and spread of resistance to the few agents that remain as therapeutic options. A notable recent development is the acquisition of carbapenemases by some strains of P. aeruginosa. Given these challenges, it would seem reasonable to identify strategies that would prevent acquisition of the bacterium by hospitalised patients. Environmental reservoirs of P. aeruginosa are readily identifiable, and there are numerous reports of outbreaks that have been attributed to an environmental source; however, the role of such sources in sporadic pseudomonal infection is less well understood. Nevertheless there is emerging evidence from prospective studies to suggest that environmental sources, especially water, may have significance in the epidemiology of sporadic P. aeruginosa infections in hospital settings, including intensive care units. A better understanding of the role of environmental reservoirs in pseudomonal infection will permit the development of new strategies and refinement of existing approaches to interrupt transmission from these sources to patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhin.2009.04.020DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
intensive care
8
environmental reservoirs
8
pseudomonal infection
8
aeruginosa
6
aeruginosa formidable
4
formidable ever-present
4
ever-present adversary
4
adversary pseudomonas
4
aeruginosa versatile
4

Similar Publications

Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002.

Metab Eng

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:

Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA.

View Article and Find Full Text PDF

Background: The rate of antibiotic treatment for catheter-associated asymptomatic bacteriuria (CA-ASB) remains high.

Methods: We conducted a retrospective study involving hospitalized patients with multidrug-resistant Pseudomonas aeruginosa (MDRP) CA-ASB. Cox proportional hazards regression models were used to identify predictors for subsequent symptomatic infections in patients with MDRP CA-ASB.

View Article and Find Full Text PDF

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF

Development of micro-nanostructured film with antibacterial, anticorrosive and thermal conductivity properties on copper surface.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D.

View Article and Find Full Text PDF

Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!