A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the effects of midazolam on cortical and thalamic neurons. | LitMetric

Modeling the effects of midazolam on cortical and thalamic neurons.

Neurosci Lett

Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616, USA.

Published: October 2009

Controversy exists regarding the site where anesthetics act in the brain to produce sedation and unconsciousness. Actions in the cerebral cortex and thalamus are likely, although the relative importance of each site is unclear. We used in computo modeling to investigate the sensitivity of cortical and thalamic neurons to midazolam (MDZ) at concentrations that produce unconsciousness. The GABA(A) receptor conductance of the model was manipulated to simulate the effects of MDZ at free-drug plasma concentrations ranging from 8 nM to 100 nM; sleepiness to complete unconsciousness occurs in humans in the 10-40 nM range. Prolongation of phasic inhibition was simulated by increasing the decay time constant and tonic inhibition was simulated by introducing a tonic current; the extent of phasic and tonic inhibition was appropriate for each simulated MDZ concentration. Phasic and tonic inhibition was simulated in cortex, and phasic inhibition was simulated in thalamus. Simulation of MDZ effect decreased cortical neuronal firing rate. For example, the mean cortical neuronal firing rate decreased by 15% (P<0.01) and 26% (P<0.01) at MDZ concentrations of 10 nM and 40 nM, respectively. However, thalamic firing rate did not change. In computo modeling of the thalamocortical system indicates that MDZ-induced GABAergic inhibition of cortical neurons plays a significant role in the transition from waking to unconsciousness. Although MDZ produces phasic inhibition in the thalamus, computer simulation suggests it is not significant enough to decrease thalamic neuronal firing. Thus, based on in computo modeling, MDZ at sedative/hypnotic concentrations produces its effects by decreasing cortical neuronal firing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2009.08.041DOI Listing

Publication Analysis

Top Keywords

inhibition simulated
16
tonic inhibition
12
cortical thalamic
8
thalamic neurons
8
phasic inhibition
8
phasic tonic
8
cortical neuronal
8
neuronal firing
8
firing rate
8
inhibition
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!