Extraversion and Neuroticism are two fundamental dimensions of human personality that influence cognitive functioning in healthy subjects. Little is known about personality changes that may occur in patients with multiple sclerosis (MS) nor about, in particular, their neurofunctional basis. The aim of this study is to determine the impact of personality characteristics on brain activity in patients with MS. Eighteen patients with clinically definite relapsing-remitting MS without any evidence of psychiatric or cognitive disorders and thirteen healthy controls matched for age, gender and education were investigated using functional magnetic resonance imaging (fMRI) during the execution of an "n-back" task. No differences were detected on the behavioral tests between the two groups, although the MS patients had lower total IQ and showed a trend towards higher Extraversion and Neuroticism scores than did the controls. fMRI analyses demonstrated that Extraversion scores were positively associated with brain activity in the fronto-parietal network including the superior parietal lobule and dorsolateral prefrontal cortex in both groups during the high load condition of the n-back task. Given the overlapping neural systems found in the two groups, we suggest that the neural activity associated with specific personality dimension is a neurophysiological characteristic preserved in patients with MS at an early stage in the course of their disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bandc.2009.07.009DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
extraversion neuroticism
8
brain activity
8
personality
5
patients
5
neurofunctional correlates
4
correlates personality
4
personality traits
4
traits relapsing-remitting
4
relapsing-remitting multiple
4

Similar Publications

Background: Multiple sclerosis (MS) onset is caused by genetic and environmental factors. Vitamin D has been identified as contributing environmental risk factor, with higher prevalence at latitudes further from the equator. Mongolia, at 45°N, has limited sunlight exposure, increasing the population's risk for vitamin D deficiency.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site.

View Article and Find Full Text PDF

Pourpose: This study aimed to investigate the seroepidemiological status of Toxoplasma gondii (T. gondii) infection in Multiple Sclerosis (MS) patients compared to controls.

Methods: The present study included 98 MS patients and 100 controls.

View Article and Find Full Text PDF

Does Clostridium Perfringens Epsilon Toxin Mimic an Auto-Antigen Involved in Multiple Sclerosis?

Toxins (Basel)

January 2025

Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, 75015 Paris, France.

Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, epsilon toxin (ETX) has been incriminated in MS, based initially on the isolation of the bacteria from a MS patient, combined with an immunoreactivity to ETX.

View Article and Find Full Text PDF

Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases.

J Funct Biomater

January 2025

School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!