Background: Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes.
Results: Here we investigated intron dynamics in the serpin superfamily in lineages pre- and postdating the split of vertebrates. Multiple intron gains were detected in a group of ray-finned fishes, once the canonical groups of vertebrate serpins had been established. In two genes, co-occurrence of non-standard introns was observed, implying that intron gains in vertebrates may even happen concomitantly or in a rapidly consecutive manner. DNA breakage/repair processes associated with genome compaction are introduced as a novel factor potentially favoring intron gain, since all non-canonical introns were found in a lineage of ray-finned fishes that experienced genomic downsizing.
Conclusion: Multiple intron acquisitions were identified in serpin genes of a lineage of ray-finned fishes, but not in any other vertebrates, suggesting that insertion rates for introns may be episodically increased. The co-occurrence of non-standard introns within the same gene discloses the possibility that introns may be gained simultaneously. The sequences flanking the intron insertion points correspond to the proto-splice site consensus sequence MAG upward arrowN, previously proposed to serve as intron insertion site. The association of intron gains in the serpin superfamily with a group of fishes that underwent genome compaction may indicate that DNA breakage/repair processes might foster intron birth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746811 | PMC |
http://dx.doi.org/10.1186/1471-2148-9-208 | DOI Listing |
Mol Ther Nucleic Acids
December 2024
Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain.
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described deep-intronic variants among monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa.
View Article and Find Full Text PDFmBio
November 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Unlabelled: Horizontal gene transfer (HGT) in fungi is less understood despite its significance in prokaryotes. In this study, we systematically searched for HGT events in 829 representative fungal genomes. Using a combination of sequence similarity and phylogeny-based approaches, we detected 20,093 prokaryotic-derived transferred genes across 750 fungal genomes, via 8,815 distinct HGT events.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. Electronic address:
Female infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder.
View Article and Find Full Text PDFPlant Mol Biol
November 2024
Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
BMC Neurol
September 2024
Department of Neurology, Ege University Medical School Bornova, Izmir, 35100, Turkey.
Background: Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS), a relatively common cause of late-onset progressive ataxia, is a genetic disease characterised by biallelic pentanucleotide AAGGG repeat expansion in intron 2 of the replication factor complex subunit 1 gene. Herein, we describe the first molecularly confirmed CANVAS family with five affected siblings from Turkey.
Case Presentation: The family comprised seven siblings born from healthy non-consanguineous parents.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!