Compound A (Cmpd A) was previously reported to form p-chlorophenyl isocyanate (CPIC), which was trapped by GSH to yield S- (N- [p-chlorophenyl] carbamoyl) glutathione adduct (SCPG) in the presence of human liver microsomes. In this study, P450 3A4 and 2C9 were demonstrated to be the enzymes mediating the activation of Cmpd A to CPIC in human liver microsomes based on inhibitory and correlation studies. Enzyme kinetics studies indicated that P450 3A4 was the primary enzyme involved in the activation of Cmpd A. In silico P450 3A4 active site docking of Cmpd A exhibited a low energy pose that orientated the pyrazole ring proximate to the heme iron atom, in which the distance between the C-3 and potential activated oxygen species was shown to be 3.4 A. Quantum molecular calculations showed that the electron density on C-3 was relatively higher than those on C-4 and C-5. These measurements suggested that the C-3 of Cmpd A was the preferred site of oxidation and hence predisposed Cmpd A in forming CPIC as previously proposed. The in silico prediction was corroborated by studies with the C-3 substituted analogue (methyl at C-3), which showed minimal conversion to CPIC in human liver microsomes. These results demonstrated a pivotal role for P450 3A4 in bioactivating Cmpd A by oxidizing at C-3 of the pyrazoline, hence facilitating the CPIC formation. Evidence of the bioactivation to CPIC in vivo was obtained by liquid chromatography-mass spectrometry (LC/MS) analysis of urine samples from human subjects administered a structural analogue of Cmpd A. The presence of S-(N-[p-chlorophenyl] carbamoyl) N-acetyl l-cysteine (SCPAC) as well as p-chlorophenyl aniline (CPA) was unequivocally demonstrated in the urine samples. The chemical scaffold, 4,5-dihydropyrazole-1-carboxylic acid-[(4-chlorophenyl)-amide], was demonstrated to possess potential metabolic liability in forming a reactive intermediate, CPIC, in humans. Bioactivation to CPIC may cause undesirable side effects through its reactivity and subsequent conversion to CPA, an established rodent carcinogen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx900167yDOI Listing

Publication Analysis

Top Keywords

human liver
16
liver microsomes
16
p450 3a4
16
chemical scaffold
8
scaffold 45-dihydropyrazole-1-carboxylic
8
p-chlorophenyl isocyanate
8
cmpd
8
cpic
8
activation cmpd
8
cpic human
8

Similar Publications

Bacteria in the complex and nontuberculous mycobacteria may affect a variety of animal species under human care and pose public health risks as zoonotic pathogens. A case of sudden onset of lethargy and increased respiratory effort in a 5-y-old, intact female reindeer () under managed care had progressed to severe dyspnea despite aggressive treatment. The animal was euthanized due to poor prognosis.

View Article and Find Full Text PDF

Background: The appropriateness of ablation for liver cancer patients meeting the Milan criteria remains controversial.

Purpose: This study aims to evaluate the long-term outcomes of MR-guided thermal ablation for HCC patients meeting the Milan criteria and develop a nomogram for predicting survival rates.

Methods: A retrospective analysis was conducted from January 2009 to December 2021 at a single institution.

View Article and Find Full Text PDF

Background: Hematopoietic stem cell transplantation (HSCT) is a common therapy for many hematologic malignancies. While advances in transplant practice have improved cancer-specific outcomes, multiple and debilitating long term physical and psychologic effects remain. Patients undergoing allogeneic bone marrow transplantation (allo-BMT) are often critically ill at initial diagnosis and with necessary sequential treatments become increasingly frail and deconditioned.

View Article and Find Full Text PDF

Objectives: Over 30% of people worldwide suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), a significant global health issue. Identifying and preventing high-risk individuals for MASLD early is crucial. The purpose of our study is to investigate the factors related to the development of MASLD and develop a risk prediction model for its occurrence.

View Article and Find Full Text PDF

Selenium-Enriched Lactiplantibacillus plantarum ZZU 8-12 Regulates Intestinal Microbiota and Inhibits Acute Liver Injury.

Probiotics Antimicrob Proteins

January 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.

Intake of certain Lactiplantibacillus strains was recognized as a potential strategy for acute liver injury (ALI) prevention. This study is aimed at developing a selenium-enriched Lactiplantibacillus strain-based ALI prevention strategy. L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!