Previous studies in the mouse have shown that high levels of alpha-globin gene expression in late erythropoiesis depend on long-range, physical interactions between remote upstream regulatory elements and the globin promoters. Using quantitative chromosome conformation capture (q3C), we have now analyzed all interactions between 4 such elements lying 10 to 50 kb upstream of the human alpha cluster and their interactions with the alpha-globin promoter. All of these elements interact with the alpha-globin gene in an erythroid-specific manner. These results were confirmed in a mouse model of human alpha globin expression in which the human cluster replaces the mouse cluster in situ (humanized mouse). We have also shown that expression and all of the long-range interactions depend largely on just one of these elements; removal of the previously characterized major regulatory element (called HS -40) results in loss of all the interactions and alpha-globin expression. Reinsertion of this element at an ectopic location restores both expression and the intralocus interactions. In contrast to other more complex systems involving multiple upstream elements and promoters, analysis of the human alpha-globin cluster during erythropoiesis provides a simple and tractable model to understand the mechanisms underlying long-range gene regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2009-03-213439 | DOI Listing |
Cureus
November 2024
Community Medicine, Baba Raghav Das Medical College, Gorakhpur, IND.
Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear.
View Article and Find Full Text PDFBr J Biomed Sci
December 2024
Department of Hematology, Sandwell and West, Birmingham Hospitals National Health Service Trust, West Bromwich, United Kingdom.
In this report, we describe a case of homozygous delta-beta (δβ) thalassaemia, a rare genetic disorder characterized by severe deficiency in delta (δ) and beta (β)-globin chain production, leading to ineffective erythropoiesis and chronic haemolytic anaemia. The patient, a 26-year-old female with δβ-thalassaemia, experienced a miscarriage. High-performance liquid chromatography revealed 89.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, China.
Circulation
January 2025
Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD.
Background: Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!