Previous studies on one of the toxic type 2 ribosome inactivating proteins (RIP), Abrus precatorius agglutinin (APA), have shown that the recognition domains of APA are restricted to monomers of Galbeta1-3GalNAc (T, Thomsen-Friedenreich glycotope) and Galbeta1-3/4GlcNAc (blood group precursor type I/II sequences); which are essential but play a minor role in the recognition process. In this study, APA recognition factors were expanded to include ligand clusters and polyvalent glycotopes by enzyme-linked lectinosorbent binding and inhibition assays. Based on the results of molar relative potency, the essential mammalian structural units are Galbeta1-3GalNAcalpha/beta1- (T(alpha)/T(beta))>Galalpha1-4Gal (E)>Galbeta1-3/4GlcNAc (I/II) and avidity for tri-/di-antennary II(beta), T, E and II monomers was found to be 7.1 x 10(2), 4.0, 5.5, 3.7 and 2.4 times higher than monomeric Gal. Among natural polyvalent glycotopes or clusters, high-density polyvalent T(alpha) and complex multivalent I(beta)/II(beta) glycotopes greatly enhanced the affinity for APA over 10(4) times. Based on these results, it is concluded that contribution of monomeric T(alpha), II(beta), I(beta), E(beta) and their clusters and polyvalency play critical roles in this recognition process. The binding intensities of these factors in decreasing order are: polyvalent T(alpha), II(beta)/I(beta) and E(beta)>tri-antennary II(beta)>>monomeric T(alpha), T(beta), I and II>Gal>>GalNAc (weak). As one of type 2 RIP lectins, these recognition factors of the B chain are likely to be crucial for attachment and endocytosis. A comparison of the differential recognition factors and combining sites of APA with those of other lectins (Ricinus communis agglutinin, RCA(1) and ricin) is also illustrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2009.07.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!