Cyclic strain disrupts endothelial network formation on Matrigel.

Microvasc Res

Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin, Berlin, Germany.

Published: December 2009

Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based "tube formation" assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mvr.2009.08.002DOI Listing

Publication Analysis

Top Keywords

cyclic strain
8
mechanical stimuli
8
endothelial cells
8
network lengths
8
conditioned media
8
endothelial
5
strain disrupts
4
disrupts endothelial
4
endothelial network
4
network formation
4

Similar Publications

3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

In this study, the dispersion behavior of MoS₂ in ionic liquids (ILs) with varying alkyl chain lengths was the primary focus of investigation, followed by the design of a novel PAM/SMA/CMC/PDA@MoS hydrogel. By optimizing the concentrations of CMC and PDA@MoS, a bifunctional hydrogel with both sensing and catalytic functions was successfully developed. Mechanical tests revealed that the PAM/SMA/CMC/0.

View Article and Find Full Text PDF

This study introduces a novel anchor-type proximal femoral nail (AT-PFN) to improve the bone-fixation integrity over the standard screw-type nail (SST-PFN). Quasi-static incremental cyclic load test was performed to investigate load-displacement, cumulative deformation energy, time-strain, and backbone curves. The finite element analysis (FEA) was implemented to identify the stress and strain distributions.

View Article and Find Full Text PDF

Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!