The effect of pathogens on selection against deleterious mutations in Drosophila melanogaster.

J Evol Biol

Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2.

Published: October 2009

In natural populations, fitness is reduced by both deleterious mutations and parasites. Few studies have examined interactions between these two factors, particularly at the level of individual genes. We examined how the presence of a bacterial pathogen, Pseudomonas aeruginosa, affected the selection against each of eight deleterious mutations in Drosophila melanogaster. We found that mutations tended to become more deleterious in the presence of disease. This increase in the average selection was primarily due to three genes with the remainder showing little evidence of change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1420-9101.2009.01830.xDOI Listing

Publication Analysis

Top Keywords

deleterious mutations
12
selection deleterious
8
mutations drosophila
8
drosophila melanogaster
8
pathogens selection
4
deleterious
4
mutations
4
melanogaster natural
4
natural populations
4
populations fitness
4

Similar Publications

Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.

View Article and Find Full Text PDF

Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.

View Article and Find Full Text PDF

The advent of next-generation sequencing (NGS) has revolutionized the analysis of genetic data, enabling rapid identification of pathogenic variants in patients with inborn errors of immunity (IEI). Sometimes, the use of NGS-based technologies is associated with challenges in the evaluation of the clinical significance of novel genetic variants. In silico prediction tools, such as SpliceAI neural network, are often used as a first-tier approach for the primary examination of genetic variants of uncertain clinical significance.

View Article and Find Full Text PDF

The formation of animal breeds usually begins with a small subsample from their ancestral population. Deleterious mutations accumulate in the population under genetic drift, inbreeding, and artificial selection during the development and maintenance of traits desired by humans. White raccoon dogs are among the most popular breeds of farmed raccoon dogs, but white raccoon dogs are more susceptible to disease and have a lower reproductive ability.

View Article and Find Full Text PDF

Dopamine receptor D4 (DRD4) plays a vital role in regulating various physiological functions, including attention, impulse control, and sleep, as well as being associated with various neurological diseases, including attention deficit hyperactivity disorder, novelty seeking, and so on. However, a comprehensive analysis of harmful nonsynonymous single nucleotide polymorphisms (nsSNPs) of the DRD4 gene and their effects remains unexplored. The aim of this study is to uncover novel damaging missense nsSNPs and their structural and functional effects on the DRD4 receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!