Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: This paper is a report of a study conducted to provide objective data to assist with setting alarm limits for early warning systems.
Background: Early warning systems are used to provide timely detection of patient deterioration outside of critical care areas, but with little data from the general ward population to guide alarm limit settings. Monitoring systems used in critical care areas are known for excellent sensitivity in detecting signs of deterioration, but give high false positive alarm rates, which are managed with nurses caring for two or fewer patients. On general wards, nurses caring for four or more patients will be unable to manage a high number of false alarms. Physiological data from a general ward population would help to guide alarm limit settings.
Methods: A dataset of continuous heart rate and respiratory rate data from a general ward population, previously collected from July 2003-January 2006, was analyzed for adult patients with no severe adverse events. Dataset modeling was constructed to analyze alarm frequency at varying heart rate and respiratory rate alarm limits.
Results: A total of 317 patients satisfied the inclusion criteria, with 780.71 days of total monitoring. Sample alarm settings appeared to optimize false positive alarm rates for the following settings: heart rate high 130-135, low 40-45; respiratory rate high 30-35, low 7-8. Rates for each selected limit can be added to calculate the total alarm frequency, which can be used to judge the impact on nurse workflow.
Conclusion: Alarm frequency data will assist with evidence-based configuration of alarm limits for early warning systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2648.2009.05048.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!