Tumor necrosis factor-alpha-associated mechanisms affecting the embryonic response to cyclophosphamide.

Am J Reprod Immunol

Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.

Published: September 2009

Problem: We have previously shown that TNF-alpha(-/-) embryos are more sensitive to the exposure to cyclophosphamide (CP) compared with TNF-alpha(+/+) embryos; however, the underlying mechanisms are not fully understood. Thus, in our present study, we tried to identify those molecules that might be responsible for the protective effect of the cytokine.

Method Of Study: CP-treated TNF-alpha(-/-) and TNF-alpha(+/+) embryos were analyzed for changes in apoptosis by TUNEL and flow cytometry, while cell proliferation was analyzed by BrdU incorporation. The expression of Bax, bcl-2, p53, the p65 subunit of NF-kappaB and IkappaBalpha was assessed by Western blotting and immunohistochemistry.

Results: CP-treated TNF-alpha(-/-) embryos exhibited a more profound decrease in their weight, which was accompanied by an earlier appearance of cellular damage and apoptotic cells and an earlier decrease in cell proliferation in the embryonic brain compared with TNF-alpha(+/+) embryos. Also, an increased percentage of Bax-positive cells and a decreased percentage of bcl-2-positive cells were detected in TNF-alpha(-/-) embryos 48 hr after exposure, which were accompanied by a decreased percentage of p53-positive cells.

Conclusion: Our data implicate TNF-alpha to be involved in the protection of the embryo against CP teratogenicity, possibly via alteration in Bax, bcl-2 or p53 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0897.2009.00727.xDOI Listing

Publication Analysis

Top Keywords

tnf-alpha-/- embryos
12
tnf-alpha+/+ embryos
12
compared tnf-alpha+/+
8
cp-treated tnf-alpha-/-
8
cell proliferation
8
bax bcl-2
8
bcl-2 p53
8
decreased percentage
8
embryos
6
tumor necrosis
4

Similar Publications

The placenta is a unique organ with various immunological and endocrinological roles that modulate maternal and fetal physiology to promote maternal-fetal tolerance, pregnancy maintenance, and parturition at term. During pregnancy, the hormone prolactin (PRL) is constitutively secreted by the placenta and is necessary for implantation, progesterone support, fetal development, and overall immune modulation. While PRL is essential for pregnancy, studies suggest that elevated levels of serum PRL (hyperprolactinemia) are associated with adverse pregnancy outcomes, including miscarriage, preterm birth, and preeclampsia.

View Article and Find Full Text PDF

Analgesic Effect of Dehydrocorydaline on Chronic Constriction Injury-Induced Neuropathic Pain via Alleviating Neuroinflammation.

Chin J Integr Med

January 2025

Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.

Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.

View Article and Find Full Text PDF

Background: Pulmonary fibrosis (PF) is a common and multidimensional devastating interstitial lung disease. The development of novel and more effective interventions for PF is an urgent clinical need. A previous study has found that miR-181a-5p plays an important role in the development of PF, and human amniotic mesenchymal stem cells (hAMSCs) exert potent therapeutic potential on PF.

View Article and Find Full Text PDF

Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.

Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).

View Article and Find Full Text PDF

Exposure to MC-LR activates the RAF/ERK signaling pathway, leading to renal inflammation and tissue damage in mice.

J Toxicol Environ Health A

December 2024

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.

Exposure to microcysatin-LR (MC-LR) is known to result in kidney damage, however the underlying mechanisms involved in MC-LR-initiated renal injury are not known. Thus, the aim of this study was to examine the effects of exposure to MC-LR on human embryo kidney (HEK 293) cell and male C57BL/6 . In the study, HEK 293 cells were incubated with MC-LR (20 µM) for 24 hr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!