HIF (hypoxia-inducible factor)-3alpha is the third member of the HIF transcription factor family. Whereas HIF-1alpha and -2alpha play critical roles in the cellular and systemic adaptation to hypoxia, little is known about the regulation and function of HIF-3alpha. At least five different splice variants may be expressed from the human HIF-3alpha locus that are suggested to exert primarily negative regulatory effects on hypoxic gene induction. In the present paper, we report that hypoxia induces the human HIF-3alpha gene at the transcriptional level in a HIF-1-dependent manner. HIF-3alpha2 and HIF-3alpha4 transcripts, the HIF-3alpha splice variants expressed in Caki-1 renal carcinoma cells, rapidly increased after exposure to hypoxia or chemical hypoxia mimetics. siRNA (small interfering RNA)-mediated HIF-alpha knockdown demonstrated that HIF-3alpha is a specific target gene of HIF-1alpha, but is not affected by HIF-2alpha knockdown. In contrast with HIF-1alpha and HIF-2alpha, HIF-3alpha is not regulated at the level of protein stability. HIF-3alpha protein could be detected under normoxia in the cytoplasm and nuclei, but increased under hypoxic conditions. Promoter analyses and chromatin immunoprecipitation experiments localized a functional hypoxia-responsive element 5' to the transcriptional start of HIF-3alpha2. siRNA-mediated knockdown of HIF-3alpha increased transactivation of a HIF-driven reporter construct and mRNA expression of lysyl oxidase. Immunohistochemistry revealed an overlap of HIF-1alpha-positive and HIF-3alpha-positive areas in human renal cell carcinomas. These findings shed light on a novel aspect of HIF-3alpha as a HIF-1 target gene and point to a possible role as a modulator of hypoxic gene induction.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20090120DOI Listing

Publication Analysis

Top Keywords

target gene
12
hypoxic gene
12
gene induction
12
hif-3alpha
9
hif hypoxia-inducible
8
hypoxia-inducible factor-3alpha
8
gene
8
hif-1 target
8
hif-3alpha splice
8
splice variants
8

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.

View Article and Find Full Text PDF

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!