Urea-induced unfolding of Na,K-ATPase from pig kidney and from shark salt gland was studied by electron paramagnetic resonance (EPR) spectroscopy of a nitroxyl derivative of maleimide covalently attached to sulfhydryl groups which are essential for activity. Urea-induced structural changes lead to the inhibition of Na,K-ATPase activity. Structural changes detected by EPR are reversible over the whole range of urea concentrations (0-8 M), although activity loss is always irreversible. The structure of the cytoplasmic domain is more accessible and more susceptible to perturbations than is the transmembrane sector of the Na,K-ATPase and thus is more sensitive to denaturant. Conformational changes at the active thiol groups of these enzymes indeed take place before unfolding of the enzyme as a whole, together with enzyme inactivation. Na,K-ATPase from pig kidney is more stable not only to thermal denaturation but also to urea-induced denaturation than is the Na,K-ATPase from shark salt gland. Susceptibility of the latter could arise from the nonhomologous regions in the cytoplasmic domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi901124j | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina. Electronic address:
Here we explore the interplay between physical and chemical perturbants to unravel links among native folding, amorphous and ordered aggregation scenarios in IFABP (rat intestinal fatty acid binding protein). This small beta-barrel protein undergoes amyloid-like aggregation above 15 % v/v trifluoroethanol. Our aim was to address the influence of sub-aggregating TFE concentrations on the unfolding transitions of IFABP.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430207, China.
Protein Sci
September 2024
Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
Function and structure are strongly coupled in obligated oligomers such as Triosephosphate isomerase (TIM). In animals and fungi, TIM monomers are inactive and unstable. Previously, we used ancestral sequence reconstruction to study TIM evolution and found that before these lineages diverged, the last opisthokonta common ancestor of TIM (LOCATIM) was an obligated oligomer that resembles those of extant TIMs.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2024
Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA).
View Article and Find Full Text PDFMol Biol Rep
March 2024
Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India.
Background: Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders.
Methods And Results: The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!