We applied Raman spectroscopy to investigate the response to electrochemical doping of the second-order D* band in single-walled carbon nanotube (SWNT) bundles. Our study reveals a dramatic increase of the D* band sensitivity to doping upon moving the laser excitation to the red end of the visible spectrum and beyond. Using the double-resonance scattering model, we show that this phenomenon evidences a second Kohn anomaly in metallic SWNTs, located in the K-point-derived region of the Brillouin zone (BZ), which stems from the Kohn anomaly at the K-point of graphene. Our results will be compared to recent doping experiments on graphene with field-effect gating and can be used to investigate the wave-vector dependent electron-phonon coupling in the bulk of the BZ of metallic SWNTs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl901618qDOI Listing

Publication Analysis

Top Keywords

kohn anomaly
12
brillouin zone
8
metallic swnts
8
anomaly electron-phonon
4
electron-phonon interaction
4
interaction k-derived
4
k-derived point
4
point brillouin
4
zone metallic
4
metallic nanotubes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!