The authors previously showed that interferon regulatory factor (IRF)4 knockout mice are protected from experimental oxazolone and TNBS colitis. Here the effect of IRF4 on the expression of pro- and anti-inflammatory cytokines in TNBS colitis and long-term CD45RB(high) transfer colitis is examined. In TNBS colitis, no differences were found in interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha expression between IRF4 knockout and wild-type mice. However, significant differences were detected in IL-6 and IL-17 production. Upon treatment with hyper-IL-6, IRF4(-/-) mice lost their protective properties towards TNBS application. Hyper-IL-6 application induced IL-6 mRNA, but not IL-17 mRNA expression, suggesting that IL-6 deficiency is not primarily responsible for the lack of IL-17 production. T-bet and GATA-3 mRNA expressions were not affected upon IL-6 application. In transfer colitis, colonic cytokine mRNA analysis revealed a reduced production of IL-6 in IRF4(-/-) reconstituted mice in the long-term course. In contrast, several other cytokines did not differ between the two groups (e.g. TNF-alpha and IL-10). Measurement of supernatants from splenic mononuclear cells revealed a significant difference in IL-6 and IL-17 production between the two groups. These findings suggest that IRF4 selectively regulates cytokine gene expression in chronic inflammation. IRF4 therefore emerges as an attractive target for the therapy of chronic intestinal inflammation. Blocking IRF4 might be an interesting option to modulate inflammation in the advanced state of inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00005-009-0046-5DOI Listing

Publication Analysis

Top Keywords

tnbs colitis
12
il-17 production
12
irf4 selectively
8
cytokine gene
8
gene expression
8
expression chronic
8
chronic intestinal
8
intestinal inflammation
8
irf4 knockout
8
transfer colitis
8

Similar Publications

Background: (-)-Fenchone is a bicyclic monoterpene present in the plant species Mill, L. (tuja), and (lavender). These plants have therapeutic value in the treatment of intestinal disorders.

View Article and Find Full Text PDF

Colon delivery of agomelatine nanoparticles in the treatment of TNBS induced ulcerative colitis.

Drug Deliv Transl Res

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.

Agomelatine is an atypical antidepressant with a long half-life and the mechanism of action similar to melatonin. Agomelatine is a strong antioxidant and its anti-inflammatory effect has been reported in many studies. The current study aimed to evaluate the anti-inflammatory effect of agomelatine loaded in targeted nanoparticles (NPs) in an experimental colitis model induced by trinitrobenzene sulfonic acid (TNBS).

View Article and Find Full Text PDF

Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.

View Article and Find Full Text PDF

The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!