Introduction: Intervertebral spacers are made of different materials, which can affect the postfusion magnetic resonance imaging (MRI) scans. Susceptibility artifacts, especially for metallic implants, can decrease the image quality. This study aimed to determine whether magnesium as a lightweight and biocompatible metal is suitable as a biomaterial for spinal implants based on its MRI artifacting behavior.

Materials And Methods: To compare artifacting behaviors, we implanted into one porcine cadaveric spine different test spacers made of magnesium, titanium, and CFRP. All test spacers were scanned using two T1-TSE MRI sequences. The artifact dimensions were traced on all scans and statistically analyzed.

Results: The total artifact volume and median artifact area of the titanium spacers were statistically significantly larger than magnesium spacers (P < 0.001), while magnesium and CFRP spacers produced almost identical artifacting behaviors (P > 0.05).

Conclusion: Our results suggest that spinal implants made with magnesium alloys will behave more like CFRP devices in MRI scans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128752PMC
http://dx.doi.org/10.1007/s11845-009-0394-5DOI Listing

Publication Analysis

Top Keywords

test spacers
12
magnetic resonance
8
resonance imaging
8
mri scans
8
spinal implants
8
artifacting behaviors
8
spacers
7
magnesium
6
imaging evaluation
4
evaluation intervertebral
4

Similar Publications

Spectroscopic investigation of two xanthane dyes and design of a FRET based pesticide sensor.

Sci Rep

January 2025

Thin Films and Nanoscience Laboratory, Department of Physics, Tripura University, Suryamaninagar, 799022, Tripura, India.

Layer-by-Layer (LbL) technique is the simplest and inexpensive method for preparartion of nano-dimensional thin films for tailoring material behavior having wide range of applications including sensors. Here, spectroscopic behavior of two laser dyes Acriflavine (Acf) and Rhodamine B (RhB) assembled onto LbL films have been investigated. It has been observed that both Acf and RhB form stable LbL films.

View Article and Find Full Text PDF

Crown rot impacted olive plants (cv. Koroneiki) in an orchard in Chakwal, Punjab, Pakistan (32° N, 72° E), with a prevalence of 60%. Observable symptoms included leaf chlorosis, defoliation, wilting, and twig dieback in 6-8-year-old plants, ultimately resulting in their demise (Fig.

View Article and Find Full Text PDF

A novel ready-to-use loop-mediated isothermal amplification (LAMP) method for detection of Burkholderia mallei and B. pseudomallei.

BMC Microbiol

January 2025

Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-Ku, Sapporo, Hokkaido, 060-0818, Japan.

Background: Glanders and melioidosis are contagious zoonotic diseases caused by Burkholderia mallei and B. pseudomallei, respectively. Bacterial isolation and polymerase chain reaction (PCR) have been used to detect these bacteria in animals suspected of infection; however, both methods require skilled experimental techniques and expensive equipment.

View Article and Find Full Text PDF

Purpose: To determine whether preoperative magnetic resonance imaging (MRI) can reliably determine intraoperative measurements in the Vertiflex Interspinous Spacer (ISS) procedure.

Methods: Patients who underwent Vertiflex ISS with Lumbar Spinal Stenosis (LSS) and a preoperative MRI available in picture archiving and communication system (PACS) between January 2013 to February 2023 were identified retrospectively from the University of Chicago Medical Center Database. An experienced board-certified pain specialist and well-trained 2nd-year medical student independently performed measurements of the interspinous space where Vertiflex ISSs of various sizes are inserted.

View Article and Find Full Text PDF

'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.

Nucleic Acids Res

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.

We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!