Phosphodiesterases do not limit beta1-adrenoceptor-mediated sinoatrial tachycardia: evidence with PDE3 and PDE4 in rabbits and PDE1-5 in rats.

Naunyn Schmiedebergs Arch Pharmacol

Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Physiology Building, Cambridge, CB2 3EG, UK.

Published: November 2009

The mammalian heart expresses at least five phosphodiesterases (PDE1-5). Catecholamines produce surges of inotropically relevant cAMP through beta(1)-adrenoceptor stimulation. cAMP is mainly hydrolysed by PDE3 and/or PDE4 thereby blunting contractility. Basal sinoatrial beating rate in mouse, rat, piglet and rabbit sinoatrial cells is reduced by PDE3 and/or PDE4 through hydrolysis of cAMP. However, in rodents, the tachycardia elicited by catecholamines through production of cAMP by beta-adrenoceptor activation is not controlled by PDE3 and PDE4, despite a blunting effect of PDE3 or/and PDE4 on basal sinoatrial beating, but it is unknown whether PDE3 limits catecholamine-evoked tachycardia in the rabbit. Since rabbit sinoatrial cells are an important model for pacemaker research, we investigated whether the positive chronotropic effects of (-)-noradrenaline on spontaneously beating right atria of the rabbit are potentiated by inhibition of PDE3 with cilostamide (300 nM). We also studied the sinoatrial effects of the PDE4 inhibitor rolipram (10 microM) and its influence on the responses to (-)-noradrenaline. For comparison, we investigated the influence of cilostamide and rolipram on the positive inotropic responses to (-)-noradrenaline on rabbit left atria and right ventricular papillary muscles. Cilostamide and concurrent cilostamide + rolipram, but not rolipram alone, increased sinoatrial rate by 15% and 31% of the effect of (-)-isoprenaline (200 microM) but the PDE inhibitors did not significantly change the chronotropic potency of (-)-noradrenaline. In contrast in papillary muscle, the positive inotropic effects of (-)-noradrenaline were potentiated 2.4-, 2.6- and 44-fold by cilostamide, rolipram and concurrent cilostamide + rolipram, respectively. In left atrium, the positive inotropic effects of (-)-noradrenaline were marginally potentiated by cilostamide, as well as potentiated 2.7- and 32-fold by rolipram and by concurrent cilostamide and rolipram respectively. To compare the influence of PDE1-5 on basal sinoatrial rate and (-)-noradrenaline-evoked tachycardia, we investigated on rat right atria the effects of selective inhibitors. The PDE4 inhibitor rolipram and non-selective inhibitor isobutyl-methylxanthine caused tachycardia with -logEC(50)s of 7.2 and 5.0 and E(max) of 18% and 102% of (-)-isoprenaline, respectively. Rolipram did not change the chronotropic potency of (-)-noradrenaline. At high concentrations (10-30 microM), the PDE1, PDE3 and PDE5 inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine, cilostamide and sildenafil, respectively, caused marginal tachycardia but did not significantly change the chronotropic potency of (-)-noradrenaline. The PDE2-selective inhibitor erythro-9-[2-hydroxy-3-nonyl]adenine caused marginal bradycardia at 30 microM and tended to reduce the chronotropic potency of (-)-noradrenaline. Rabbit PDE3 reduces basal sinoatrial rate. Although PDE4 only marginally reduces rate, under conditions of PDE3 inhibition, it further reduces sinoatrial rate. Both PDE3 and PDE4 control atrial and ventricular positive inotropic effects of (-)-noradrenaline. In contrast, neither PDE3 nor PDE4 limit the sinoatrial tachycardia induced by (-)-noradrenaline. In the rat, only PDE4, but not PDE1, PDE2, PDE3 and PDE5, reduces basal sinoatrial rate. None of the five rat PDEs limits the (-)-noradrenaline-evoked tachycardia. Taken together, these results confirm and expand evidence for our proposal that the cAMP-compartment modulating basal sinoatrial rate, controlled by PDE3 and/or PDE4, is different from the PDE-resistant cAMP compartment involved in beta(1)-adrenoceptor-mediated sinoatrial tachycardia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-009-0445-5DOI Listing

Publication Analysis

Top Keywords

basal sinoatrial
24
sinoatrial rate
24
cilostamide rolipram
20
pde3 pde4
16
effects --noradrenaline
16
positive inotropic
16
chronotropic potency
16
potency --noradrenaline
16
sinoatrial
14
pde3
14

Similar Publications

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

Identifying sex similarities and differences in structure and function of the sinoatrial node in the mouse heart.

Front Med (Lausanne)

December 2024

Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.

Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.

View Article and Find Full Text PDF

Essential Role of the RIα Subunit of cAMP-Dependent Protein Kinase in Regulating Cardiac Contractility and Heart Failure Development.

Circulation

December 2024

Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France.

Background: The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling.

View Article and Find Full Text PDF

The present view on heartbeat initiation is that a primary pacemaker cell or a group of cells in the sinoatrial node (SAN) center paces the rest of the SAN and the atria. However, recent high-resolution imaging studies show a more complex paradigm of SAN function that emerges from heterogeneous signaling, mimicking brain cytoarchitecture and function. Here, we developed and tested a new conceptual numerical model of SAN organized similarly to brain networks featuring a modular structure with small-world topology.

View Article and Find Full Text PDF
Article Synopsis
  • - The study looked into how the autonomic nervous system (ANS) and intrinsic mechanisms of sinoatrial node (SAN) cells influence heartbeat patterns and variability, especially as people age.
  • - It involved recording ECG data from young adults (under 21) and older adults (41-78) while examining their heart rate behaviors in normal states and after blocking ANS activity with specific medications.
  • - The results revealed that young adults' heartbeat variability was mainly influenced by intrinsic mechanisms, whereas for older adults, both ANS and intrinsic factors played roles, highlighting the impact of anesthesia on heart regulation in different age groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!