The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a 'computational multiplexing' approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 micro-m behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885353 | PMC |
http://dx.doi.org/10.1038/nature08242 | DOI Listing |
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.
View Article and Find Full Text PDFCells
December 2024
Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death.
View Article and Find Full Text PDFTheriogenology
March 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118, China. Electronic address:
Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!