This paper reports on the methodology and materials used to construct anthropomorphic phantoms for use in dosimetry studies, improving on methods and materials previously described by Jones et al. [Med Phys. 2006;33(9):3274-82]. To date, the methodology described has been successfully used to create a series of three different adult phantoms at the University of Florida (UF). All phantoms were constructed in 5 mm transverse slices using materials designed to mimic human tissue at diagnostic photon energies: soft tissue-equivalent substitute (STES), lung tissue-equivalent substitute (LTES), and bone tissue-equivalent substitute (BTES). While the formulation for BTES remains unchanged from the previous epoxy resin compound developed by Jones et al. [Med Phys. 2003;30(8):2072-81], both the STES and LTES were redesigned utilizing a urethane based compound which forms a pliable tissue-equivalent material. These urethane based materials were chosen in part for improved phantom durability and easier accommodation of real-time dosimeters. The production process has also been streamlined with the use of an automated machining system to create molds for the phantom slices from bitmap images based on the original segmented computed tomography (CT) datasets. Information regarding the new tissue-equivalent materials as well as images of the construction process and completed phantom are included.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720556 | PMC |
http://dx.doi.org/10.1120/jacmp.v10i3.2986 | DOI Listing |
Phys Med
January 2025
Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Purpose: To propose comprehensive characterization methods of additive manufacturing (AM) materials for MV photon and MeV electron radiotherapy.
Methodology: This study investigated 15 AM materials using CT machines. Geometrical accuracy, tissue-equivalence, uniformity, and fabrication parameters were considered.
Appl Radiat Isot
January 2025
Nuclear Engineering Department. Federal University of Minas Gerais, 31.270-901, Belo Horizonte, Minas Gerais, Brazil; Nuclear Technology Development Center, 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
Whole-body counter (WBC) systems are used for in vivo monitoring in occupational internal dosimetry, typically calibrated using physical anthropomorphic phantoms. Our research group previously 3D-printed the Reference Female Phantom for Internal Dosimetry (RFPID) without internal organs specifically designed for WBC calibration. The RFPID and it is intended to fill it homogenously with ballistic gel, which is commonly used as a tissue equivalent in ballistic studies.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2024
Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
To investigate the potential of 3D-printable thermoplastics as tissue-equivalent materials to be used in multimodal radiotherapy end-to-end quality assurance (QA) devices.Six thermoplastics were investigated: Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polymethyl Methacrylate (PMMA), High Impact Polystyrene (HIPS) and StoneFil. Measurements of mass density (ρ), Relative Electron Density (RED), in a nominal 6 MV photon beam, and Relative Stopping Power (RSP), in a 210 MeV proton pencil-beam, were performed.
View Article and Find Full Text PDFPhys Med Biol
July 2024
Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia.
Sci Rep
February 2024
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!