Despite the susceptibility of dendritic cells (DCs) to human T-cell lymphotropic virus type 1 (HTLV-1) infection and the defined role of these cells in disease pathogenesis, the mechanisms of viral binding to DCs have not been fully delineated. Recently, a glucose transporter, GLUT-1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) were demonstrated to facilitate HTLV-1 entry into T cells. DCs express their own array of antigen receptors, the most important being the DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) with respect to retrovirus binding. Consequently, the role of DC-SIGN and other HTLV-1 attachment factors was analyzed in viral binding, transmission, and productive infection using monocyte-derived DCs (MDDCs), blood myeloid DCs, and B-cell lines expressing DC-SIGN. The relative expression of DC-SIGN, GLUT-1, HSPGs, and NRP-1 first was examined on both DCs and B-cell lines. Although the inhibition of these molecules reduced viral binding, HTLV-1 transmission from DCs to T cells was mediated primarily by DC-SIGN. DC-SIGN also was shown to play a role in the infection of MDDCs as well as model B-cell lines. The HTLV-1 infection of MDDCs also was achieved in blood myeloid DCs following the enhancement of virus-induced interleukin-4 production and subsequent DC-SIGN expression in this cell population. This study represents the first comprehensive analysis of potential HTLV-1 receptors on DCs and strongly suggests that DC-SIGN plays a critical role in HTLV-1 binding, transmission, and infection, thereby providing an attractive target for the development of antiretroviral therapeutics and microbicides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2772783 | PMC |
http://dx.doi.org/10.1128/JVI.01054-09 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!