We report on radio-controlled insect biobots by directing the flight of Manduca sexta through neuromuscular activation. Early metamorphosis insertion technology was used to implant metal wire probes into the insect brain and thorax tissue. Inserted probes were adopted by the developing tissue as a result of the metamorphic growth. A mechanically and electrically reliable interface with the insect tissue was realized with respect to the insect's behavioral and anatomical adoption. Helium balloons were used to increase the payload capacity and flight duration of the insect biobots enabling a large number of applications. A super-regenerative receiver with a weight of 650 mg and 750 muW of power consumption was built to control the insect flight path through remotely transmitted electrical stimulation pulses. Initiation and cessation of flight, as well as yaw actuation, were obtained on freely flying balloon-assisted moths through joystick manipulation on a conventional model airplane remote controller.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2009.2022551 | DOI Listing |
Sensors (Basel)
August 2020
Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27695, USA.
Disaster robotics is a growing field that is concerned with the design and development of robots for disaster response and disaster recovery. These robots assist first responders by performing tasks that are impractical or impossible for humans. Unfortunately, current disaster robots usually lack the maneuverability to efficiently traverse these areas, which often necessitate extreme navigational capabilities, such as centimeter-scale clearance.
View Article and Find Full Text PDFPLoS One
March 2019
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States of America.
Biobotics investigates the use of live insects as biological robots whose locomotion can be controlled by neurostimulation through implanted electrodes. Inactivity in the biobots (biological robots) can sometimes be noticed following extended neurostimulation, partly owing to incompatibility of implanted electrodes with the biobotic application or gradual degradation of the tissue-electrode interface. Implanted electrodes need to sufficiently exhibit consistent, reliable, and stable performance during stimulation experiments, have low tissue-electrode impedance, facilitate good charge injection capacity, and be compact in size or shape.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Biobotic research involving neurostimulation of instrumented insects to control their locomotion is finding potential as an alternative solution towards development of centimeter-scale distributed swarm robotics. To improve the reliability of biobotic agents, their control mechanism needs to be precisely characterized. To achieve this goal, this paper presents our initial efforts for statistical assessment of the angular response of roach biobots to the applied bioelectrical stimulus.
View Article and Find Full Text PDFPLoS One
August 2016
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors.
View Article and Find Full Text PDFPLoS One
May 2016
Department of Physics-Engineering, Washington and Lee University, Lexington, Virginia, United States of America.
Swarms of insects instrumented with wireless electronic backpacks have previously been proposed for potential use in search and rescue operations. Before deploying such biobot swarms, an effective long-term neural-electric stimulus interface must be established, and the locomotion response to various stimuli quantified. To this end, we studied a variety of pulse types (mono- vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!