Sarco(endo)plasmic reticulum calcium ATPases (SERCA) are cellular pumps that transport Ca(2+) into the sarcoplasmic reticulum (SR). Serca2 is the most widely expressed gene family member. The very early embryonic lethality of Serca2(null) mouse embryos has precluded further evaluation of loss of Serca2 function in the context of organ physiology. We have generated mice carrying a conditional Serca2(flox) allele which allows disruption of the Serca2 gene in an organ-specific and/or inducible manner. The model was tested by mating Serca2(flox) mice with MLC-2v(wt/Cre) mice and with alphaMHC-Cre transgenic mice. In heterozygous Serca2(wt/flox)MLC-2v(wt/Cre) mice, the expression of SERCA2a and SERCA2b proteins were reduced in the heart and slow skeletal muscle, in accordance with the expression pattern of the MLC-2v gene. In Serca2(flox/flox) Tg(alphaMHC-Cre) embryos with early homozygous cardiac Serca2 disruption, normal embryonic development and yolk sac circulation was maintained up to at least embryonic stage E10.5. The Serca2(flox) mouse is the first murine conditional gene disruption model for the SERCA family of Ca(2+) ATPases, and should be a powerful tool for investigating specific physiological roles of SERCA2 function in a range of tissues and organs in vivo both in adult and embryonic stages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313567PMC
http://dx.doi.org/10.1016/j.ceca.2009.07.004DOI Listing

Publication Analysis

Top Keywords

mice carrying
8
carrying conditional
8
conditional serca2flox
8
serca2flox allele
8
serca2 function
8
mice
6
serca2
5
serca2flox
4
allele generation
4
generation ca2+
4

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.

Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.

View Article and Find Full Text PDF

Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.

Cell Mol Life Sci

December 2024

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.

Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence.

View Article and Find Full Text PDF

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Diabetic foot ulcer (DFU) is a common but devastating complication of diabetes mellitus and might ultimately lead to amputation. Elucidating the regulatory mechanism of wound healing in DFU is quite important for developing DFU management strategies. Here, we show, mecenchymal stem cell (MSC)-derived exosomes promoted the proliferation, migration and angiogenesis of high glucose-treated endothelial cells and reduced cell apoptosis.

View Article and Find Full Text PDF

Modulation of β secretase and neuroinflammation by biomimetic nanodelivery system for Alzheimer's disease therapy.

J Control Release

December 2024

Key Laboratory of Environmental Medicine Engineering of Ministry of Education, State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Public Health, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China. Electronic address:

Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. The vicious circle between amyloid-β peptide (Aβ) overgeneration and microglial dysfunction is an important pathological event that promotes AD progression. However, therapeutic strategies toward only Aβ or microglial modulation still have many problems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!