We report the use of transition metal nanoparticles (Ni or Co) to longitudinally cut open multiwalled carbon nanotubes in order to create graphitic nanoribbons. The process consists of catalytic hydrogenation of carbon, in which the metal particles cut sp(2) hybridized carbon atoms along nanotubes that results in the liberation of hydrocarbon species. Observations reveal the presence of unzipped nanotubes that were cut by the nanoparticles. We also report the presence of partially open carbon nanotubes, which have been predicted to have novel magnetoresistance properties.(1) The nanoribbons produced are typically 15-40 nm wide and 100-500 nm long. This method offers an alternative approach for making graphene nanoribbons, compared to the chemical methods reported recently in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl901631z | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.
View Article and Find Full Text PDFChemistry
January 2025
Henan Normal University, School of Chemistry and Chemical Engineering, CHINA.
Currently, the development of suitable transition metal chalcogenides (TMDs) for aqueous zinc ion batteries (AZIBs) is plagued by the terrible conductivity and electrochemical properties. Herein, a one-step ball milling method is applied to enhance the conductivity of commercial MnTe cathode by constructing three dimensional (3D) carbon nanotubes (CNTs) interweaved MnTe nanoparticles (abbreviated as MnTe@CNTs), which can achieve ultrafast ion conduction. The stable electrochemistry properties benefit from the synergistic effects between layered MnTe and 3D CNTs, which can improve the electrons/ions diffusion kinetics as cycling.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!