One-dimensional gold nanoparticle arrays by electrostatically directed organization using polypeptide self-assembly.

Angew Chem Int Ed Engl

Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.

Published: December 2009

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796555PMC
http://dx.doi.org/10.1002/anie.200901621DOI Listing

Publication Analysis

Top Keywords

one-dimensional gold
4
gold nanoparticle
4
nanoparticle arrays
4
arrays electrostatically
4
electrostatically directed
4
directed organization
4
organization polypeptide
4
polypeptide self-assembly
4
one-dimensional
1
nanoparticle
1

Similar Publications

Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Thermal Optimization of Edge-Emitting Lasers Arrays.

Materials (Basel)

December 2024

Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 90-003 Łódź, Poland.

This paper presents a novel approach to address the issue of uneven temperature distribution in one-dimensional laser arrays, specifically in gallium nitride edge-emitting lasers emitting green light of 540 nm. The results were obtained using heat flow numerical analysis, which included an optimization method specifically developed for this type of array. It was demonstrated that thermal optimization of a one-dimensional edge-emitting laser array can be achieved by adjusting the placement of the emitters within the array and the size of the top gold contact, without changing the overall dimensions of the device.

View Article and Find Full Text PDF

Tripodal Triptycenes as a Versatile Building Block for Highly Ordered Molecular Films and Self-Assembled Monolayers.

Acc Chem Res

January 2025

Laboratory for Chemistry and Life Science (CLS), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.

ConspectusThe design of properties and functions of molecular assemblies requires not only a proper choice of building blocks but also control over their packing arrangements. A highly versatile unit in this context is a particular type of triptycene with substituents at the 1,8,13-positions, called tripodal triptycene, which offers predictable molecular packing and multiple functionalization sites, both at the opposite 4,5,16- or 10 (bridgehead)-positions. These triptycene building blocks are capable of two-dimensional (2D) nested hexagonal packing, leading to the formation of 2D sheets, which undergo one-dimensional (1D) stacking into well-defined "2D+1D" structures.

View Article and Find Full Text PDF

The V30 benchmark set for anharmonic vibrational frequencies of molecular dimers.

J Chem Phys

December 2024

Department of Chemistry, University of Graz, Heinrichstraße 28/IV, 8010 Graz, Austria.

Article Synopsis
  • Intermolecular vibrations are difficult to describe but are essential for understanding entropy and free energies, which can differentiate crystal packing arrangements in molecules through THz spectroscopy.
  • A benchmark dataset (V30) includes 30 small molecular dimers with various intermolecular interactions, calculated using the quantum chemistry method CCSD(T).
  • The research employs different models to analyze vibrational frequencies, including an innovative approach that addresses challenges with low-frequency modes by using a one-dimensional hindered rotor model, ultimately demonstrating that this method effectively describes fundamental frequencies for small and semi-rigid dimers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!