A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response properties of trigeminal ganglion mechanosensitive neurons innervating the temporomandibular joint of the rabbit. | LitMetric

The primary mechanosensitive neurons innervating the temporomandibular joint (TMJ neurons) may play an important role in controlling mandibular movement and position. The purpose of the study was to investigate the neurophysiological properties of TMJ neurons during passive movement of the isolated condyle in 55 rabbits and the intact condyle in 29 rabbits. Discharges of TMJ neurons from the trigeminal ganglion were recorded with a microelectrode as the isolated condyle was moved manually and by a computer-regulated mechanostimulator and as the intact condyle was manually stimulated. A total of 237 TMJ neurons were recorded rostrocaudally from the mandibular nerve area lateral to the maxillary region in the dorsal half of the trigeminal ganglion. Of the recorded TMJ units, 97% were slowly adapting (SA) and 67% of the SA units had an accompanying ongoing discharge. The proportion of adaptation types and appearance of ongoing discharges for the isolated condyle did not differ significantly from those for the intact condyle. Most of the TMJ units (89%) responded multidirectionally to the rostral and ventral movements of the isolated condyle. The discharge frequencies of the TMJ units increased as the condylar displacement and velocity increased within a 5-mm anterior displacement of the isolated condyle. Displacement of the isolated condyle influenced the discharge frequency of the units to a greater extent than the velocity of the condyle movement. No responses of TMJ units were observed during the descending ramp. Based on these results, we conclude that sensory information is transmitted by TMJ neurons encoding joint position, displacement and velocity in a physiological range of mandibular displacement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-009-1978-zDOI Listing

Publication Analysis

Top Keywords

isolated condyle
24
tmj neurons
20
tmj units
16
trigeminal ganglion
12
intact condyle
12
condyle
10
tmj
9
mechanosensitive neurons
8
neurons innervating
8
innervating temporomandibular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!