Raman and surface-enhanced Raman scattering (SERS) of 5-fluorouracil (5-FU) have been recorded under several experimental conditions. SERS spectra have been analysed according to a resonant charge-transfer (CT) mechanism similar to a resonance Raman (RR) process, involving the photoinduced transfer of an electron from the Fermi level of the metal to vacant orbitals of the adsorbate (SERS-CT). In order to detect the enhancement mechanism and to identify the chemical species that give rise to the spectra, the theoretical SERS-CT intensities for the dienolic and diketo forms, and its respective N1 and N3 deprotonated anions (5-FU(-)), have been calculated and compared with the experimental results. In this way, the presence of N1 deprotonated anion is confirmed by SERS given that the calculated SERS-CT intensities predict the selective enhancement of the band at ca. 1680 cm(-1) in agreement with the experiment. Therefore, the metal-to-adsorbate CT process involves the transient formation of the respective radical dianion (5-FU (2-)), which is new evidence of the relevance of the CT enhancement mechanism in SERS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b903823jDOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman scattering
8
enhancement mechanism
8
sers-ct intensities
8
scattering 5-fluorouracil
4
5-fluorouracil adsorbed
4
adsorbed silver
4
silver nanostructures
4
nanostructures raman
4
raman surface-enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!