Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 A resolution and refined to an R(cryst) of 19.0% and an R(free) of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25 degrees and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR-Trx interactions mediate the FO to FR transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2733882PMC
http://dx.doi.org/10.1107/S0907444909021817DOI Listing

Publication Analysis

Top Keywords

hordeum vulgare
8
nadph-dependent thioredoxin
8
structure
5
structure hordeum
4
vulgare nadph-dependent
4
thioredoxin reductase
4
reductase unwinding
4
unwinding reaction
4
reaction mechanism
4
mechanism thioredoxins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!